56 research outputs found

    Enhancing Confidentiality and Privacy Preservation in e-Health to Enhanced Security

    Get PDF
    Electronic health (e-health) system use is growing, which has improved healthcare services significantly but has created questions about the privacy and security of sensitive medical data. This research suggests a novel strategy to overcome these difficulties and strengthen the security of e-health systems while maintaining the privacy and confidentiality of patient data by utilising machine learning techniques. The security layers of e-health systems are strengthened by the comprehensive framework we propose in this paper, which incorporates cutting-edge machine learning algorithms. The suggested framework includes data encryption, access control, and anomaly detection as its three main elements. First, to prevent unauthorised access during transmission and storage, patient data is secured using cutting-edge encryption technologies. Second, to make sure that only authorised staff can access sensitive medical records, access control mechanisms are strengthened using machine learning models that examine user behaviour patterns. This research's inclusion of machine learning-based anomaly detection is its most inventive feature. The technology may identify variations from typical data access and usage patterns, thereby quickly spotting potential security breaches or unauthorised activity, by training models on past e-health data. This proactive strategy improves the system's capacity to successfully address new threats. Extensive experiments were carried out employing a broad dataset made up of real-world e-health scenarios to verify the efficacy of the suggested approach. The findings showed a marked improvement in the protection of confidentiality and privacy, along with a considerable decline in security breaches and unauthorised access events

    Development of a Security-Focused Multi-Channel Communication Protocol and Associated Quality of Secure Service (QoSS) Metrics

    Get PDF
    The threat of eavesdropping, and the challenge of recognizing and correcting for corrupted or suppressed information in communication systems is a consistent challenge. Effectively managing protection mechanisms requires an ability to accurately gauge the likelihood or severity of a threat, and adapt the security features available in a system to mitigate the threat. This research focuses on the design and development of a security-focused communication protocol at the session-layer based on a re-prioritized communication architecture model and associated metrics. From a probabilistic model that considers data leakage and data corruption as surrogates for breaches of confidentiality and integrity, a set of metrics allows the direct and repeatable quantification of the security available in single- or multi-channel networks. The quantification of security is based directly upon the probabilities that adversarial listeners and malicious disruptors are able to gain access to or change the original message. Fragmenting data across multiple channels demonstrates potential improvements to confidentiality, while duplication improves the integrity of the data against disruptions. Finally, the model and metrics are exercised in simulation. The ultimate goal is to minimize the information available to adversaries

    Blockchain for secured IoT and D2D applications over 5G cellular networks : a thesis by publications presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Author's Declaration: "In accordance with Sensors, SpringerOpen, and IEEE’s copyright policy, this thesis contains the accepted and published version of each manuscript as the final version. Consequently, the content is identical to the published versions."The Internet of things (IoT) is in continuous development with ever-growing popularity. It brings significant benefits through enabling humans and the physical world to interact using various technologies from small sensors to cloud computing. IoT devices and networks are appealing targets of various cyber attacks and can be hampered by malicious intervening attackers if the IoT is not appropriately protected. However, IoT security and privacy remain a major challenge due to characteristics of the IoT, such as heterogeneity, scalability, nature of the data, and operation in open environments. Moreover, many existing cloud-based solutions for IoT security rely on central remote servers over vulnerable Internet connections. The decentralized and distributed nature of blockchain technology has attracted significant attention as a suitable solution to tackle the security and privacy concerns of the IoT and device-to-device (D2D) communication. This thesis explores the possible adoption of blockchain technology to address the security and privacy challenges of the IoT under the 5G cellular system. This thesis makes four novel contributions. First, a Multi-layer Blockchain Security (MBS) model is proposed to protect IoT networks while simplifying the implementation of blockchain technology. The concept of clustering is utilized to facilitate multi-layer architecture deployment and increase scalability. The K-unknown clusters are formed within the IoT network by applying a hybrid Evolutionary Computation Algorithm using Simulated Annealing (SA) and Genetic Algorithms (GA) to structure the overlay nodes. The open-source Hyperledger Fabric (HLF) Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The quantitative arguments demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported methods. The proposed lightweight blockchain model is also better suited to balance network latency and throughput compared to a traditional global blockchain. Next, a model is proposed to integrate IoT systems and blockchain by implementing the permissioned blockchain Hyperledger Fabric. The security of the edge computing devices is provided by employing a local authentication process. A lightweight mutual authentication and authorization solution is proposed to ensure the security of tiny IoT devices within the ecosystem. In addition, the proposed model provides traceability for the data generated by the IoT devices. The performance of the proposed model is validated with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results indicate that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios. Despite the increasing development of blockchain platforms, there is still no comprehensive method for adopting blockchain technology on IoT systems due to the blockchain's limited capability to process substantial transaction requests from a massive number of IoT devices. The Fabric comprises various components such as smart contracts, peers, endorsers, validators, committers, and Orderers. A comprehensive empirical model is proposed that measures HLF's performance and identifies potential performance bottlenecks to better meet blockchain-based IoT applications' requirements. The implementation of HLF on distributed large-scale IoT systems is proposed. The performance of the HLF is evaluated in terms of throughput, latency, network sizes, scalability, and the number of peers serviceable by the platform. The experimental results demonstrate that the proposed framework can provide a detailed and real-time performance evaluation of blockchain systems for large-scale IoT applications. The diversity and the sheer increase in the number of connected IoT devices have brought significant concerns about storing and protecting the large IoT data volume. Dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. A layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system is proposed to mitigate these challenges by using the HLF platform for distributed ledger solutions. The need for a centralized server and third-party auditor is eliminated by leveraging HLF peers who perform transaction verification and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata is stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Finally, experiments are conducted to evaluate the performance of the proposed scheme in terms of throughput, latency, communication, and computation costs. The results indicate the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the big data ecosystem using the HLF blockchain

    A Survey on Data Deduplication

    Get PDF
    Now-a-days, the demand of data storage capacity is increasing drastically. Due to more demands of storage, the computer society is attracting toward cloud storage. Security of data and cost factors are important challenges in cloud storage. A duplicate file not only waste the storage, it also increases the access time. So the detection and removal of duplicate data is an essential task. Data deduplication, an efficient approach to data reduction, has gained increasing attention and popularity in large-scale storage systems. It eliminates redundant data at the file or subfile level and identifies duplicate content by its cryptographically secure hash signature. It is very tricky because neither duplicate files don?t have a common key nor they contain error. There are several approaches to identify and remove redundant data at file and chunk levels. In this paper, the background and key features of data deduplication is covered, then summarize and classify the data deduplication process according to the key workflow

    Distributed authorization in loosely coupled data federation

    Get PDF
    The underlying data model of many integrated information systems is a collection of inter-operable and autonomous database systems, namely, a loosely coupled data federation. A challenging security issue in designing such a data federation is to ensure the integrity and confidentiality of data stored in remote databases through distributed authorization of users. Existing solutions in centralized databases are not directly applicable here due to the lack of a centralized authority, and most solutions designed for outsourced databases cannot easily support frequent updates essential to a data federation. In this thesis, we provide a solution in three steps. First, we devise an architecture to support fully distributed, fine-grained, and data-dependent authorization in loosely coupled data federations. For this purpose, we adapt the integrity-lock architecture originally designed for multilevel secure databases to data federations. Second, we propose an integrity mechanism to detect, localize, and verify updates of data stored in remote databases while reducing communication overhead and limiting the impact of unauthorized updates. We realize the mechanism as a three-stage procedure based on a grid of Merkle Hash Trees built on relational tables. Third, we present a confidentiality mechanism to control remote users' accesses to sensitive data while allowing authorization policies to be frequently updated. We achieve this objective through a new over-encryption scheme based on secret sharing. Finally, we evaluate the proposed architecture and mechanisms through experiments

    NA

    Get PDF
    United States policy requires that access to and dissemination of classified information be controlled. Separate networks and workstations for each classification do not meet user requirements. Users also need commercially available office productivity tools. Traditional multilevel systems are costly and are unable support an evolving suite of Commercial Off-The-Shelf (COTS) applications. This thesis presents a design for a Trusted Computing Base Extension (TCBE) that allows COTS workstations to function securely as part of a multilevel network that uses high assurance multilevel servers as the backbone. The TCBE will allow COTS workstations to use commercially available software applications, while providing a Trusted Path to a high assurance multilevel server. The research resulted in a design of a TCBE system that can be employed with COTS workstations, allowing them to function as untrusted clients in the context of a secure multilevel network.http://archive.org/details/designoftrustedc1094532753NAU.S. Marine Corps (U.S.M.C.) author.Approved for public release; distribution is unlimited
    • …
    corecore