16 research outputs found

    Virtualized Reconfigurable Resources and Their Secured Provision in an Untrusted Cloud Environment

    Get PDF
    The cloud computing business grows year after year. To keep up with increasing demand and to offer more services, data center providers are always searching for novel architectures. One of them are FPGAs, reconfigurable hardware with high compute power and energy efficiency. But some clients cannot make use of the remote processing capabilities. Not every involved party is trustworthy and the complex management software has potential security flaws. Hence, clients’ sensitive data or algorithms cannot be sufficiently protected. In this thesis state-of-the-art hardware, cloud and security concepts are analyzed and com- bined. On one side are reconfigurable virtual FPGAs. They are a flexible resource and fulfill the cloud characteristics at the price of security. But on the other side is a strong requirement for said security. To provide it, an immutable controller is embedded enabling a direct, confidential and secure transfer of clients’ configurations. This establishes a trustworthy compute space inside an untrusted cloud environment. Clients can securely transfer their sensitive data and algorithms without involving vulnerable software or a data center provider. This concept is implemented as a prototype. Based on it, necessary changes to current FPGAs are analyzed. To fully enable reconfigurable yet secure hardware in the cloud, a new hybrid architecture is required.Das Geschäft mit dem Cloud Computing wächst Jahr für Jahr. Um mit der steigenden Nachfrage mitzuhalten und neue Angebote zu bieten, sind Betreiber von Rechenzentren immer auf der Suche nach neuen Architekturen. Eine davon sind FPGAs, rekonfigurierbare Hardware mit hoher Rechenleistung und Energieeffizienz. Aber manche Kunden können die ausgelagerten Rechenkapazitäten nicht nutzen. Nicht alle Beteiligten sind vertrauenswürdig und die komplexe Verwaltungssoftware ist anfällig für Sicherheitslücken. Daher können die sensiblen Daten dieser Kunden nicht ausreichend geschützt werden. In dieser Arbeit werden modernste Hardware, Cloud und Sicherheitskonzept analysiert und kombiniert. Auf der einen Seite sind virtuelle FPGAs. Sie sind eine flexible Ressource und haben Cloud Charakteristiken zum Preis der Sicherheit. Aber auf der anderen Seite steht ein hohes Sicherheitsbedürfnis. Um dieses zu bieten ist ein unveränderlicher Controller eingebettet und ermöglicht eine direkte, vertrauliche und sichere Übertragung der Konfigurationen der Kunden. Das etabliert eine vertrauenswürdige Rechenumgebung in einer nicht vertrauenswürdigen Cloud Umgebung. Kunden können sicher ihre sensiblen Daten und Algorithmen übertragen ohne verwundbare Software zu nutzen oder den Betreiber des Rechenzentrums einzubeziehen. Dieses Konzept ist als Prototyp implementiert. Darauf basierend werden nötige Änderungen von modernen FPGAs analysiert. Um in vollem Umfang eine rekonfigurierbare aber dennoch sichere Hardware in der Cloud zu ermöglichen, wird eine neue hybride Architektur benötigt

    Efficient Security Algorithm for Provisioning Constrained Internet of Things (IoT) Devices

    Get PDF
    Addressing the security concerns of constrained Internet of Things (IoT) devices, such as client- side encryption and secure provisioning remains a work in progress. IoT devices characterized by low power and processing capabilities do not exactly fit into the provisions of existing security schemes, as classical security algorithms are built on complex cryptographic functions that are too complex for constrained IoT devices. Consequently, the option for constrained IoT devices lies in either developing new security schemes or modifying existing ones as lightweight. This work presents an improved version of the Advanced Encryption Standard (AES) known as the Efficient Security Algorithm for Power-constrained IoT devices, which addressed some of the security concerns of constrained Internet of Things (IoT) devices, such as client-side encryption and secure provisioning. With cloud computing being the key enabler for the massive provisioning of IoT devices, encryption of data generated by IoT devices before onward transmission to cloud platforms of choice is being advocated via client-side encryption. However, coping with trade-offs remain a notable challenge with Lightweight algorithms, making the innovation of cheaper secu- rity schemes without compromise to security a high desirable in the secure provisioning of IoT devices. A cryptanalytic overview of the consequence of complexity reduction with mathematical justification, while using a Secure Element (ATECC608A) as a trade-off is given. The extent of constraint of a typical IoT device is investigated by comparing the Laptop/SAMG55 implemen- tations of the Efficient algorithm for constrained IoT devices. An analysis of the implementation and comparison of the Algorithm to lightweight algorithms is given. Based on experimentation results, resource constrain impacts a 657% increase in the encryption completion time on the IoT device in comparison to the laptop implementation; of the Efficient algorithm for Constrained IoT devices, which is 0.9 times cheaper than CLEFIA and 35% cheaper than the AES in terms of the encryption completion times, compared to current results in literature at 26%, and with a 93% of avalanche effect rate, well above a recommended 50% in literature. The algorithm is utilised for client-side encryption to provision the device onto AWS IoT core

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Cryptanalytic Flaws in Oh et al.’s ID-Based Authenticated Key Agreement Protocol

    No full text
    A key agreement protocol is designed for two or more entities to agree upon a shared secret key, which is used to preserve confidentiality and data integrity over an open network. In 2007, Oh et al. proposed an efficient ID-based authenticated key agreement protocol on elliptic curve pairings, which is believed to be able to generate two session keys securely after a protocol execution. However, we discover that their protocol is in fact susceptible to the basic impersonation attack as well as the key compromise impersonation attack. In this paper, we present the imperfections of Oh et al.’s scheme and subsequently we suggest a slight modification to the scheme which would resolve the problems. 1

    Foundations of secure computation

    Get PDF
    Issued as Workshop proceedings and Final report, Project no. G-36-61

    Enabling Usable and Performant Trusted Execution

    Full text link
    A plethora of major security incidents---in which personal identifiers belonging to hundreds of millions of users were stolen---demonstrate the importance of improving the security of cloud systems. To increase security in the cloud environment, where resource sharing is the norm, we need to rethink existing approaches from the ground-up. This thesis analyzes the feasibility and security of trusted execution technologies as the cornerstone of secure software systems, to better protect users' data and privacy. Trusted Execution Environments (TEE), such as Intel SGX, has the potential to minimize the Trusted Computing Base (TCB), but they also introduce many challenges for adoption. Among these challenges are TEE's significant impact on applications' performance and non-trivial effort required to migrate legacy systems to run on these secure execution technologies. Other challenges include managing a trustworthy state across a distributed system and ensuring these individual machines are resilient to micro-architectural attacks. In this thesis, I first characterize the performance bottlenecks imposed by SGX and suggest optimization strategies. I then address two main adoption challenges for existing applications: managing permissions across a distributed system and scaling the SGX's mechanism for proving authenticity and integrity. I then analyze the resilience of trusted execution technologies to speculative execution, micro-architectural attacks, which put cloud infrastructure at risk. This analysis revealed a devastating security flaw in Intel's processors which is known as Foreshadow/L1TF. Finally, I propose a new architectural design for out-of-order processors which defeats all known speculative execution attacks.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155139/1/oweisse_1.pd

    Foundations of Security Analysis and Design III, FOSAD 2004/2005- Tutorial Lectures

    Get PDF
    he increasing relevance of security to real-life applications, such as electronic commerce and Internet banking, is attested by the fast-growing number of research groups, events, conferences, and summer schools that address the study of foundations for the analysis and the design of security aspects. This book presents thoroughly revised versions of eight tutorial lectures given by leading researchers during two International Schools on Foundations of Security Analysis and Design, FOSAD 2004/2005, held in Bertinoro, Italy, in September 2004 and September 2005. The lectures are devoted to: Justifying a Dolev-Yao Model under Active Attacks, Model-based Security Engineering with UML, Physical Security and Side-Channel Attacks, Static Analysis of Authentication, Formal Methods for Smartcard Security, Privacy-Preserving Database Systems, Intrusion Detection, Security and Trust Requirements Engineering

    Civil Good - A Platform For Sustainable and Inclusive Online Discussion

    Get PDF
    Civil Good is a website concept proposed by Alan Mandel with the goal of enabling safe, anonymous, productive, and civil discourse without the disruptive behavior and language common to much of the Internet. The goal of Civil Good is to improve the critical thinking and discussion skills of its users while combating the effects of political polarization and misinformation in society. This paper analyzes Mandel\u27s proposed concept, providing additional research to either support or refute the various features proposed, and recommendations to simplify user interactions. It also examines topics mentioned only briefly or not discussed by Mandel, such as data protection methods, the psychology of Web browsing, marketing, operational costs, legal issues, monetization options, and mobile presence

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse
    corecore