164 research outputs found

    A Comprehensive Study on Crypto-Algorithms

    Get PDF
    In the field of computer network and security, cryptography plays a vital role for secure data transmission as it follows the principle of data confidentiality, integrity, non-repudiation, authentication. By using several cryptographic algorithms, a user can deliver and receive the message in more convenient way. In this paper, we have collaborated on various cryptographic algorithms, several types of cryptographic techniques along with different types of security attacks prevailing in case of cryptography. During the exchanging of any sort of information, the key generation, encryption and decryption processes are examined in more details in the current paper. We have discussed regarding RSA (Ron Rives, Adi Shamir and Len Adelman), which is one of the most secure algorithm in the context of data and information sharing, that has been analysed clearly in our work along with the basic concepts of DES(Data Encryption Standard) , conventional encryption model, ECC(Elliptic curve cryptography), Digital signature, ABE(Attribute based Encryption), KP-ABE(Key policy Attribute based encryption), CP-ABE(Ciphertext policy attribute based encryption), IBE(Identity based Encryption). We have elaborated various cryptograhic concepts for keeping the message confidential and secure while considering secured data communication in case of networks

    The Impact of Quantum Computing on Present Cryptography

    Full text link
    The aim of this paper is to elucidate the implications of quantum computing in present cryptography and to introduce the reader to basic post-quantum algorithms. In particular the reader can delve into the following subjects: present cryptographic schemes (symmetric and asymmetric), differences between quantum and classical computing, challenges in quantum computing, quantum algorithms (Shor's and Grover's), public key encryption schemes affected, symmetric schemes affected, the impact on hash functions, and post quantum cryptography. Specifically, the section of Post-Quantum Cryptography deals with different quantum key distribution methods and mathematicalbased solutions, such as the BB84 protocol, lattice-based cryptography, multivariate-based cryptography, hash-based signatures and code-based cryptography.Comment: 10 pages, 1 figure, 3 tables, journal article - IJACS

    Quantum Algorithms for Attacking Hardness Assumptions in Classical and Post‐Quantum Cryptography

    Get PDF
    In this survey, the authors review the main quantum algorithms for solving the computational problems that serve as hardness assumptions for cryptosystem. To this end, the authors consider both the currently most widely used classically secure cryptosystems, and the most promising candidates for post-quantum secure cryptosystems. The authors provide details on the cost of the quantum algorithms presented in this survey. The authors furthermore discuss ongoing research directions that can impact quantum cryptanalysis in the future

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table

    An Enhanced Distribution Transforming Encoder (Dte) Of The Honey Encryption Scheme For Reinforcing Text-Based Encryption

    Get PDF
    Honey Encryption (HE) is a cryptosystem used as a reinforcement to the conventional encryption scheme to address brute-force attacks specifically in the context of password-based encryption systems. The HE scheme relies on a model called the Distribution Transforming Encoder (DTE), which focuses on the use of deception as a key defensive approach in the design of primitives that facilitate information security by yielding plausible-looking but fake plaintext during decryption using an incorrect key

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    Critical Perspectives on Provable Security: Fifteen Years of Another Look Papers

    Get PDF
    We give an overview of our critiques of “proofs” of security and a guide to our papers on the subject that have appeared over the past decade and a half. We also provide numerous additional examples and a few updates and errata

    History of Cryptographic Key Sizes

    Get PDF
    International audienc

    Improving Bounds on Elliptic Curve Hidden Number Problem for ECDH Key Exchange

    Get PDF
    Elliptic Curve Hidden Number Problem (EC-HNP) was first introduced by Boneh, Halevi and Howgrave-Graham at Asiacrypt 2001. To rigorously assess the bit security of the Diffie--Hellman key exchange with elliptic curves (ECDH), the Diffie--Hellman variant of EC-HNP, regarded as an elliptic curve analogy of the Hidden Number Problem (HNP), was presented at PKC 2017. This variant can also be used for practical cryptanalysis of ECDH key exchange in the situation of side-channel attacks. In this paper, we revisit the Coppersmith method for solving the involved modular multivariate polynomials in the Diffie--Hellman variant of EC-HNP and demonstrate that, for any given positive integer dd, a given sufficiently large prime pp, and a fixed elliptic curve over the prime field Fp\mathbb{F}_p, if there is an oracle that outputs about 1d+1\frac{1}{d+1} of the most (least) significant bits of the xx-coordinate of the ECDH key, then one can give a heuristic algorithm to compute all the bits within polynomial time in log2p\log_2 p. When d>1d>1, the heuristic result 1d+1\frac{1}{d+1} significantly outperforms both the rigorous bound 56\frac{5}{6} and heuristic bound 12\frac{1}{2}. Due to the heuristics involved in the Coppersmith method, we do not get the ECDH bit security on a fixed curve. However, we experimentally verify the effectiveness of the heuristics on NIST curves for small dimension lattices
    corecore