112 research outputs found

    Cryptanalysis of an Improved One-Way Hash Chain Self-Healing Group Key Distribution Scheme

    Get PDF
    In 2014, Chen et al. proposed a one-way hash self-healing group key distribution scheme for resource-constrained wireless networks in Journal of Sensors (14(14):24358-24380, DOI: 10.3390/ s141224358). They asserted that their scheme 2 has the constant storage overhead, low communication overhead, and is secure, i.e., achieves mt-revocation capability, mt-wise forward secrecy, any-wise backward secrecy and has mt-wise collusion attack resistance capability. Unfortunately, an attack method against Chen et al.\u27s scheme 2 is found in this paper, which contributes to some security flaws. More precisely, a revoked user can recover other legitimate users\u27 personal secrets, which directly breaks the forward security, mt-revocation capability and mt-wise collusion attack resistance capability. Thus, Chen et al.\u27s scheme 2 is insecure

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    On the Security of a Self-healing Group Key Distribution Scheme

    Get PDF
    Recently, in Journal of Security and Communication Networks (5(12):1363-1374, DOI: 10.1002/sec.429), Wang et al. proposed a group key distribution scheme with self-healing property for wireless networks in which resource is constrained. They claimed that their key distribution scheme satisfies forward security, backward security and can resist collusion attack. Unfortunately, we found some security flaws in their scheme. In this paper, we present a method to attack this scheme. The attack illustrates that this scheme does not satisfy forward security, which also directly breaks the collusion resistance capability

    Security of Wireless Sensor Networks: Current Status and Key Issues

    Get PDF

    A Survey of Cryptography and Key Management Schemes for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are made up of a large number of tiny sensors, which can sense, analyze, and communicate information about the outside world. These networks play a significant role in a broad range of fields, from crucial military surveillance applications to monitoring building security. Key management in WSNs is a critical task. While the security and integrity of messages communicated through these networks and the authenticity of the nodes are dependent on the robustness of the key management schemes, designing an efficient key generation, distribution, and revocation scheme is quite challenging. While resource-constrained sensor nodes should not be exposed to computationally demanding asymmetric key algorithms, the use of symmetric key-based systems leaves the entire network vulnerable to several attacks. This chapter provides a comprehensive survey of several well-known cryptographic mechanisms and key management schemes for WSNs

    HUC-HISF: A Hybrid Intelligent Security Framework for Human-centric Ubiquitous Computing

    Get PDF
    制度:新 ; 報告番号:乙2336号 ; 学位の種類:博士(人間科学) ; 授与年月日:2012/1/18 ; 早大学位記番号:新584

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Lightweight wireless network authentication scheme for constrained oracle sensors

    Get PDF
    x, 212 leaves : ill. (some col.) ; 29 cmIncludes abstract and appendices.Includes bibliographical references (leaves 136-147).With the significant increase in the dependence of contextual data from constrained IoT, the blockchain has been proposed as a possible solution to address growing concerns from organizations. To address this, the Lightweight Blockchain Authentication for Constrained Sensors (LBACS) scheme was proposed and evaluated using quantitative and qualitative methods. LBACS was designed with constrained Wireless Sensor Networks (WSN) in mind and independent of a blockchain implementation. It asserts the authentication and provenance of constrained IoT on the blockchain utilizing a multi-signature approach facilitated by symmetric and asymmetric methods and sufficient considerations for key and certificate registry management. The metrics, threat assessment and comparison to existing WSN authentication schemes conducted asserted the pragmatic use of LBACS to provide authentication, blockchain provenance, integrity, auditable, revocation, weak backward and forward secrecy and universal forgeability. The research has several implications for the ubiquitous use of IoT and growing interest in the blockchain

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link
    corecore