835 research outputs found

    An efficient and secure RSA--like cryptosystem exploiting R\'edei rational functions over conics

    Full text link
    We define an isomorphism between the group of points of a conic and the set of integers modulo a prime equipped with a non-standard product. This product can be efficiently evaluated through the use of R\'edei rational functions. We then exploit the isomorphism to construct a novel RSA-like scheme. We compare our scheme with classic RSA and with RSA-like schemes based on the cubic or conic equation. The decryption operation of the proposed scheme turns to be two times faster than RSA, and involves the lowest number of modular inversions with respect to other RSA-like schemes based on curves. Our solution offers the same security as RSA in a one-to-one communication and more security in broadcast applications.Comment: 18 pages, 1 figur

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Public Key Cryptography based on Semigroup Actions

    Full text link
    A generalization of the original Diffie-Hellman key exchange in (Z/pZ)∗(\Z/p\Z)^* found a new depth when Miller and Koblitz suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build interesting semigroup actions using finite (simple) semirings. The practicality of the proposed extensions rely on the orbit sizes of the semigroup actions and at this point it is an open question how to compute the sizes of these orbits in general and also if there exists a square root attack in general. In Section 2 a concrete practical semigroup action built from simple semirings is presented. It will require further research to analyse this system.Comment: 20 pages. To appear in Advances in Mathematics of Communication

    Doubly Perfect Nonlinear Boolean Permutations

    Full text link
    Due to implementation constraints the XOR operation is widely used in order to combine plaintext and key bit-strings in secret-key block ciphers. This choice directly induces the classical version of the differential attack by the use of XOR-kind differences. While very natural, there are many alternatives to the XOR. Each of them inducing a new form for its corresponding differential attack (using the appropriate notion of difference) and therefore block-ciphers need to use S-boxes that are resistant against these nonstandard differential cryptanalysis. In this contribution we study the functions that offer the best resistance against a differential attack based on a finite field multiplication. We also show that in some particular cases, there are robust permutations which offers the best resistant against both multiplication and exponentiation base differential attacks. We call them doubly perfect nonlinear permutations
    • 

    corecore