21 research outputs found

    Ultralightweight Cryptography for passive RFID systems

    Get PDF
    RFID (Radio Frequency Identification) is one of the most growing technologies among the pervasive systems. Non line of sight capability makes RFID systems much faster than its other contending systems such as barcodes and magnetic taps etc. But there are some allied security apprehensions with RFID systems. RFID security has been acquired a lot of attention in last few years as evinced by the large number of publications (over 3000). In this paper, a brief survey of eminent ultralightweight authentication protocols has been presented & then a four-layer security model, which comprises of various passive and active attacks, has been proposed. Finally, Cryptanalysis of these protocols has also been performed under the implications of the proposed security model

    MUMAP: Modified Ultralightweight Mutual Authentication protocol for RFID enabled IoT networks

    Get PDF
    Flawed authentication protocols led to the need for a secured protocol for radio frequency identification (RFID) techniques. In this paper, an authentication protocol named Modified ultralightweight mutual authentication protocol (MUMAP) has been proposed and cryptanalysed by Juel-Weis challenge. The proposed protocol aimed to reduce memory requirements in the authentication process for low-cost RFID tags with limited resources. Lightweight operations like XOR and Left Rotation, are used to circumvent the flaws made in the other protocols. The proposed protocol has three-phase of authentication. Security analysis of the proposed protocol proves its resistivity against attacks like desynchronization, disclosure, tracking, and replay attack. On the other hand, performance analysis indicates that it is an effective protocol to use in low-cost RFID tags. Juel-Weis challenge verifies the proposed protocol where it shows insusceptibility against modular operations

    Generalized Desynchronization Attack on UMAP: Application to RCIA, KMAP, SLAP and SASI+^+ protocols

    Get PDF
    Tian et al. proposed a permutation based authentication protocol entitled RAPP. However, it came out very soon that it suffers from several security treats such as desynchronization attack. Following RAPP, several protocols have been proposed in literature to defeat such attacks. Among them, some protocols suggested to keep a record of old parameters by both the reader and the tag. In this paper we present a genrilized version of all such protocols, named GUMAP, and present an efficent desynchronization attack against it. The complexity of our attack is 5 consequences sessions of protocol and the success probability is almost 1. Our attack is applicable as it is to recently proposed protocols entitled RCIA, KMAP, SASI+^{+} and SLAP. To the best of our knowledge, it is the first report on the vulnerability of these protocols

    On the security of another CRC based ultralightweight RFID authentication protocol

    Get PDF
    Design of ultra-lightweight authentication protocols for RFID systems conformed with the EPC Class-1 Generation-2 standard is still a challenging issue in RFID security. Recently, Maurya et al. have proposed a CRC based authentication protocol and claimed that their protocol can resist against all known attacks in RFID systems. However, in this paper we show that their protocol is vulnerable to tag impersonation attack. Moreover, we show that how an attacker can easily trace a target RFID tag. Our analyses show that the success probability of our attacks is “1” while the complexity is only one session eavesdropping, two XORs and one CRC computation

    Security Analysis of RAPP An RFID Authentication Protocol based on Permutation

    Get PDF
    One of the key problems in Radio Frequency Identification(RFID) is security and privacy. Many RFID authentication protocols have been proposed to preserve security and privacy of the system. Nevertheless, most of these protocols are analyzed and it is shown that they can not provide security against some RFID attacks. RAPP is a new ultralightweight authentication protocol with permutation. In RAPP, only three operations are involved: bitwise XOR, left rotation and permutation. In this paper, we give an active attack on RAPP. We first collect some authentication messages through impersonating valid tag and readers; Then we forge valid reader to communicate with the tag about times. Using the property of the left rotation and permutation operation, we can deduce the relationship of bits of random number or secret keys at different positions, thus obtain all the secret shared by the reader and the tag
    corecore