12 research outputs found

    Key Authentication Scheme-based on Discrete Logarithms and Chinese Remainder Theorem

    Get PDF
    Public key cryptosystems are secure only when the authenticity of the public key is assured. Shao proposeda new scheme to overcome the problems of the existing schemes, which suffers from two major drawbacks. Thefirst drawback is the availability of users’ passwords in plaintext format in key server which are prone to attacksby ill-minded users. The second one is depending on the key server blindly for certificate generation, withoutfurther verification by the user. To overcome these severe drawbacks, we proposed an improved key authenticationscheme based on Chinese remainder theorem and discrete logarithms. Our scheme allows the user to generate his/her certificate without the help of any trusted third party. This scheme is intended for online services, military anddefense applications to exchange keys securely.

    Security-analysis of a class of cryptosystems based on linear error-correcting codes

    Get PDF

    Pseudorandom Functions and Permutations Provably Secure Against Related-Key Attacks

    Get PDF
    This paper fills an important foundational gap with the first proofs, under standard assumptions and in the standard model, of the existence of pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) resisting rich and relevant forms of related-key attacks (RKA). An RKA allows the adversary to query the function not only under the target key but under other keys derived from it in adversary-specified ways. Based on the Naor-Reingold PRF we obtain an RKA-PRF whose keyspace is a group and that is proven, under DDH, to resist attacks in which the key may be operated on by arbitrary adversary-specified group elements. Previous work was able only to provide schemes in idealized models (ideal cipher, random oracle), under new, non-standard assumptions, or for limited classes of attacks. The reason was technical difficulties that we resolve via a new approach and framework that, in addition to the above, yields other RKA-PRFs including a DLIN-based one derived from the Lewko-Waters PRF. Over the last 15 years cryptanalysts and blockcipher designers have routinely and consistently targeted RKA-security; it is visibly important for abuse-resistant cryptography; and it helps protect against fault-injection sidechannel attacks. Yet ours are the first significant proofs of existence of secure constructs. We warn that our constructs are proofs-of-concept in the foundational style and not practical

    That’s not my signature! Fail-stop signatures for a post-quantum world

    Get PDF
    The Snowden\u27s revelations kick-started a community-wide effort to develop cryptographic tools against mass surveillance. In this work, we propose to add another primitive to that toolbox: Fail-Stop Signatures (FSS) [EC\u2789]. FSS are digital signatures enhanced with a forgery-detection mechanism that can protect a PPT signer from more powerful attackers. Despite the fascinating concept, research in this area stalled after the \u2790s. However, the ongoing transition to post-quantum cryptography, with its hiccups due to the novelty of underlying assumptions, has become the perfect use case for FSS. This paper aims to reboot research on FSS with practical use in mind: Our framework for FSS includes ``fine-grained\u27\u27 security definitions (that assume a powerful, but bounded adversary e.g: can break 128128-bit of security, but not 256256-bit). As an application, we show new FSS constructions for the post-quantum setting. We show that FSS are equivalent to standard, provably secure digital signatures that do not require rewinding or programming random oracles, and that this implies lattice-based FSS. Our main construction is an FSS version of SPHINCS, which required building FSS versions of all its building blocks: WOTS, XMSS, and FORS. In the process, we identify and provide generic solutions for two fundamental issues arising when deriving a large number of private keys from a single seed, and when building FSS for Hash-and-Sign-based signatures

    User-Centric Security and Privacy Mechanisms in Untrusted Networking and Computing Environments

    Get PDF
    Our modern society is increasingly relying on the collection, processing, and sharing of digital information. There are two fundamental trends: (1) Enabled by the rapid developments in sensor, wireless, and networking technologies, communication and networking are becoming more and more pervasive and ad hoc. (2) Driven by the explosive growth of hardware and software capabilities, computation power is becoming a public utility and information is often stored in centralized servers which facilitate ubiquitous access and sharing. Many emerging platforms and systems hinge on both dimensions, such as E-healthcare and Smart Grid. However, the majority information handled by these critical systems is usually sensitive and of high value, while various security breaches could compromise the social welfare of these systems. Thus there is an urgent need to develop security and privacy mechanisms to protect the authenticity, integrity and confidentiality of the collected data, and to control the disclosure of private information. In achieving that, two unique challenges arise: (1) There lacks centralized trusted parties in pervasive networking; (2) The remote data servers tend not to be trusted by system users in handling their data. They make existing security solutions developed for traditional networked information systems unsuitable. To this end, in this dissertation we propose a series of user-centric security and privacy mechanisms that resolve these challenging issues in untrusted network and computing environments, spanning wireless body area networks (WBAN), mobile social networks (MSN), and cloud computing. The main contributions of this dissertation are fourfold. First, we propose a secure ad hoc trust initialization protocol for WBAN, without relying on any pre-established security context among nodes, while defending against a powerful wireless attacker that may or may not compromise sensor nodes. The protocol is highly usable for a human user. Second, we present novel schemes for sharing sensitive information among distributed mobile hosts in MSN which preserves user privacy, where the users neither need to fully trust each other nor rely on any central trusted party. Third, to realize owner-controlled sharing of sensitive data stored on untrusted servers, we put forward a data access control framework using Multi-Authority Attribute-Based Encryption (ABE), that supports scalable fine-grained access and on-demand user revocation, and is free of key-escrow. Finally, we propose mechanisms for authorized keyword search over encrypted data on untrusted servers, with efficient multi-dimensional range, subset and equality query capabilities, and with enhanced search privacy. The common characteristic of our contributions is they minimize the extent of trust that users must place in the corresponding network or computing environments, in a way that is user-centric, i.e., favoring individual owners/users

    Techniques améliorées pour la cryptanalyse des primitives symétriques

    Get PDF
    This thesis proposes improvements which can be applied to several techniques for the cryptanalysis of symmetric primitives. Special attention is given to linear cryptanalysis, for which a technique based on the fast Walsh transform was already known (Collard et al., ICISIC 2007). We introduce a generalised version of this attack, which allows us to apply it on key recovery attacks over multiple rounds, as well as to reduce the complexity of the problem using information extracted, for example, from the key schedule. We also propose a general technique for speeding key recovery attacks up which is based on the representation of Sboxes as binary decision trees. Finally, we showcase the construction of a linear approximation of the full version of the Gimli permutation using mixed-integer linear programming (MILP) optimisation.Dans cette thĂšse, on propose des amĂ©liorations qui peuvent ĂȘtre appliquĂ©es Ă  plusieurs techniques de cryptanalyse de primitives symĂ©triques. On dĂ©die une attention spĂ©ciale Ă  la cryptanalyse linĂ©aire, pour laquelle une technique basĂ©e sur la transformĂ©e de Walsh rapide Ă©tait dĂ©jĂ  connue (Collard et al., ICISC 2007). On introduit une version gĂ©nĂ©ralisĂ©e de cette attaque, qui permet de l'appliquer pour la rĂ©cupĂ©ration de clĂ© considerant plusieurs tours, ainsi que le rĂ©duction de la complexitĂ© du problĂšme en utilisant par example des informations provĂ©nantes du key-schedule. On propose aussi une technique gĂ©nĂ©rale pour accĂ©lĂ©rer les attaques par rĂ©cupĂ©ration de clĂ© qui est basĂ©e sur la reprĂ©sentation des boĂźtes S en tant que arbres binaires. Finalement, on montre comment on a obtenu une approximation linĂ©aire sur la version complĂšte de la permutation Gimli en utilisant l'optimisation par mixed-integer linear programming (MILP)

    Algebraic Frameworks for Cryptographic Primitives

    Full text link
    A fundamental goal in theoretical cryptography is to identify the conceptually simplest abstractions that generically imply a collection of other cryptographic primitives. For symmetric-key primitives, this goal has been accomplished by showing that one-way functions are necessary and sufficient to realize primitives ranging from symmetric-key encryption to digital signatures. By contrast, for asymmetric primitives, we have no (known) unifying simple abstraction even for a few of its most basic objects. Moreover, even for public-key encryption (PKE) alone, we have no unifying abstraction that all known constructions follow. The fact that almost all known PKE constructions exploit some algebraic structure suggests considering abstractions that have some basic algebraic properties, irrespective of their concrete instantiation. We make progress on the aforementioned fundamental goal by identifying simple and useful cryptographic abstractions and showing that they imply a variety of asymmetric primitives. Our general approach is to augment symmetric abstractions with algebraic structure that turns out to be sufficient for PKE and much more, thus yielding a “bridge” between symmetric and asymmetric primitives. We introduce two algebraic frameworks that capture almost all concrete instantiations of (asymmetric) cryptographic primitives, and we also demonstrate their applicability by showing their cryptographic implications. Therefore, rather than manually building different cryptosystems from a new assumption, one only needs to build one (or more) of our simple structured primitives, and a whole host of cryptosystems immediately follows.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166137/1/alamati_1.pd
    corecore