91 research outputs found

    Cryptanalyzing a discrete-time chaos synchronization secure communication system

    Full text link
    This paper describes the security weakness of a recently proposed secure communication method based on discrete-time chaos synchronization. We show that the security is compromised even without precise knowledge of the chaotic system used. We also make many suggestions to improve its security in future versions.Comment: 11 pages, 3 figures, latex forma

    Cryptographic requirements for chaotic secure communications

    Get PDF
    In recent years, a great amount of secure communications systems based on chaotic synchronization have been published. Most of the proposed schemes fail to explain a number of features of fundamental importance to all cryptosystems, such as key definition, characterization, and generation. As a consequence, the proposed ciphers are difficult to realize in practice with a reasonable degree of security. Likewise, they are seldom accompanied by a security analysis. Thus, it is hard for the reader to have a hint about their security. In this work we provide a set of guidelines that every new cryptosystems would benefit from adhering to. The proposed guidelines address these two main gaps, i.e., correct key management and security analysis, to help new cryptosystems be presented in a more rigorous cryptographic way. Also some recommendations are offered regarding some practical aspects of communications, such as channel noise, limited bandwith, and attenuation.Comment: 13 pages, 3 figure

    Breaking a secure communication scheme based on the phase synchronization of chaotic systems

    Get PDF
    A security analysis of a recently proposed secure communication scheme based on the phase synchronization of chaotic systems is presented. It is shown that the system parameters directly determine the ciphertext waveform, hence it can be readily broken by parameter estimation of the ciphertext signal.Comment: 4 pages, 6 figure

    Breaking a chaos-noise-based secure communication scheme

    Full text link
    This paper studies the security of a secure communication scheme based on two discrete-time intermittently-chaotic systems synchronized via a common random driving signal. Some security defects of the scheme are revealed: 1) the key space can be remarkably reduced; 2) the decryption is insensitive to the mismatch of the secret key; 3) the key-generation process is insecure against known/chosen-plaintext attacks. The first two defects mean that the scheme is not secure enough against brute-force attacks, and the third one means that an attacker can easily break the cryptosystem by approximately estimating the secret key once he has a chance to access a fragment of the generated keystream. Yet it remains to be clarified if intermittent chaos could be used for designing secure chaotic cryptosystems.Comment: RevTeX4, 11 pages, 15 figure

    A new color image encryption technique using DNA computing and Chaos-based substitution box

    Get PDF
    In many cases, images contain sensitive information and patterns that require secure processing to avoid risk. It can be accessed by unauthorized users who can illegally exploit them to threaten the safety of people’s life and property. Protecting the privacies of the images has quickly become one of the biggest obstacles that prevent further exploration of image data. In this paper, we propose a novel privacy-preserving scheme to protect sensitive information within images. The proposed approach combines deoxyribonucleic acid (DNA) sequencing code, Arnold transformation (AT), and a chaotic dynamical system to construct an initial S-box. Various tests have been conducted to validate the randomness of this newly constructed S-box. These tests include National Institute of Standards and Technology (NIST) analysis, histogram analysis (HA), nonlinearity analysis (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), bit independence criterion strict avalanche criterion (BIC-SAC), bit independence criterion nonlinearity (BIC-NL), equiprobable input/output XOR distribution, and linear approximation probability (LP). The proposed scheme possesses higher security wit NL = 103.75, SAC ≈ 0.5 and LP = 0.1560. Other tests such as BIC-SAC and BIC-NL calculated values are 0.4960 and 112.35, respectively. The results show that the proposed scheme has a strong ability to resist many attacks. Furthermore, the achieved results are compared to existing state-of-the-art methods. The comparison results further demonstrate the effectiveness of the proposed algorithm
    • 

    corecore