305 research outputs found

    Using Genetic Algorithm to Break Knapsack Cipher with Sequence Size 16

    Get PDF
    With the growth of networked system and applications such as eCommerce, the demand for effective internetsecurity is increasing. Cryptology is the science and study of systems for secret communication. It consists of twocomplementary fields of study: cryptography and cryptanalysis.The genetic algorithm is one of the search methods, whichfinds the optimal solution. It is one of the methods, which is used to decrypt cipher.This work focuses on using GeneticAlgorithms to cryptanalyse knapsack cipher. The knapsack cipher is with a knapsack sequence of size 16 to encrypt twocharacters together. Different values of parameters have been used: Population size, mutation rate, number of generation

    Quadratic compact knapsack public-key cryptosystem

    Get PDF
    AbstractKnapsack-type cryptosystems were among the first public-key cryptographic schemes to be invented. Their NP-completeness nature and the high speed in encryption/decryption made them very attractive. However, these cryptosystems were shown to be vulnerable to the low-density subset-sum attacks or some key-recovery attacks. In this paper, additive knapsack-type public-key cryptography is reconsidered. We propose a knapsack-type public-key cryptosystem by introducing an easy quadratic compact knapsack problem. The system uses the Chinese remainder theorem to disguise the easy knapsack sequence. The encryption function of the system is nonlinear about the message vector. Under the relinearization attack model, the system enjoys a high density. We show that the knapsack cryptosystem is secure against the low-density subset-sum attacks by observing that the underlying compact knapsack problem has exponentially many solutions. It is shown that the proposed cryptosystem is also secure against some brute-force attacks and some known key-recovery attacks including the simultaneous Diophantine approximation attack and the orthogonal lattice attack

    An Analysis of Modern Cryptosystems

    Get PDF
    Since the ancient Egyptian empire, man has searched for ways to protect information from getting into the wrong hands. Julius Caesar used a simple substitution cipher to protect secrets. During World War II, the Allies and the Axis had codes that they used to protect information. Now that we have computers at our disposal, the methods used to protect data in the past are ineffective. More recently, computer scientists and mathematicians have been working diligently to develop cryptosystems which will provide absolute security in a computing environment. The three major cryptosystems in use today are DES, RSA, and the Knapsack Cryptosystem. These cryptosystems have been reviewed and the positive and negative aspects of each is discussed. A newcomer to the field of cryptology is the Random Spline Cryptosystem which is discussed in detail

    Safer parameters for the Chor–Rivest cryptosystem

    Get PDF
    AbstractVaudenay’s cryptanalysis against Chor–Rivest cryptosystem is applicable when the parameters, p and h, originally proposed by the authors are used. Nevertheless, if p and h are both prime integers, then Vaudenay’s attack is not applicable. In this work, a choice of these parameters resistant to the existing cryptanalytic attacks, is presented. The parameters are determined in a suitable range guaranteeing its security and the computational feasibility of implementation. Regrettably, the obtained parameters are scarce in practice
    • …
    corecore