695 research outputs found

    Tensor-based trapdoors for CVP and their application to public key cryptography

    Get PDF
    We propose two trapdoors for the Closest-Vector-Problem in lattices (CVP) related to the lattice tensor product. Using these trapdoors we set up a lattice-based cryptosystem which resembles to the McEliece scheme

    Squares of matrix-product codes

    Get PDF
    The component-wise or Schur product CCC*C' of two linear error-correcting codes CC and CC' over certain finite field is the linear code spanned by all component-wise products of a codeword in CC with a codeword in CC'. When C=CC=C', we call the product the square of CC and denote it C2C^{*2}. Motivated by several applications of squares of linear codes in the area of cryptography, in this paper we study squares of so-called matrix-product codes, a general construction that allows to obtain new longer codes from several ``constituent'' codes. We show that in many cases we can relate the square of a matrix-product code to the squares and products of their constituent codes, which allow us to give bounds or even determine its minimum distance. We consider the well-known (u,u+v)(u,u+v)-construction, or Plotkin sum (which is a special case of a matrix-product code) and determine which parameters we can obtain when the constituent codes are certain cyclic codes. In addition, we use the same techniques to study the squares of other matrix-product codes, for example when the defining matrix is Vandermonde (where the minimum distance is in a certain sense maximal with respect to matrix-product codes).This work is supported by the Danish Council for IndependentResearch: grant DFF-4002-00367, theSpanish Ministry of Economy/FEDER: grant RYC-2016-20208 (AEI/FSE/UE), the Spanish Ministry of Science/FEDER: grant PGC2018-096446-B-C21, and Junta de CyL (Spain): grant VA166G

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    A novel blind signature scheme and its variations based on DLP

    Get PDF
    Blind Signature is an addendum of Digital Signature.It is a two party protocol,in which a requester sends a message to a signer to get the signature without revealing the contents of the message to the signer. The signer puts the signature using his/her private keys and the generated signature can be verified by anyone using signer’s public keys.Blind signature has a major property called as untraceability or unlinkability i.e after the generation of the signature the signer cannot link the message-signature pair. This is known as blindness property. We have proposed blind signature scheme and its variation based on discrete logarithm problem(DLP),in which major emphasis is given on the untraceability property. We have cryptanalyzed Carmenisch et al.’s blind signature scheme and Lee et al.’s blind signature scheme and proposed an improvement over it. It is found that, the proposed scheme has less computational complexity and they can withstand active attacks. Blind signature has wide applications in real life scenarios, such as, e-cash, e-voting and e-commerece applications. i

    Cryptanalysis of Fridrich's chaotic image encryption

    Get PDF
    We cryptanalyze Fridrich's chaotic image encryption algorithm. We show that the algebraic weaknesses of the algorithm make it vulnerable against chosen-ciphertext attacks. We propose an attack that reveals the secret permutation that is used to shuffle the pixels of a round input. We demonstrate the effectiveness of our attack with examples and simulation results. We also show that our proposed attack can be generalized to other well-known chaotic image encryption algorithms.Scientific and Technological Research Council of Turkey (TUBITAK) [106E143]; Turkish Academy of Sciences [TUBA-GEBIP/2009]Ercan Solak and Cahit Cokal were supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 106E143. Turker Biyikoglu was supported by Turkish Academy of Sciences through Young Scientist Award Program (TUBA-GEBIP/2009).Publisher's Versio
    corecore