389 research outputs found

    Session Initiation Protocol Attacks and Challenges

    Full text link
    In recent years, Session Initiation Protocol (SIP) has become widely used in current internet protocols. It is a text-based protocol much like Hyper Text Transport Protocol (HTTP) and Simple Mail Transport Protocol (SMTP). SIP is a strong enough signaling protocol on the internet for establishing, maintaining, and terminating session. In this paper the areas of security and attacks in SIP are discussed. We consider attacks from diverse related perspectives. The authentication schemes are compared, the representative existing solutions are highlighted, and several remaining research challenges are identified. Finally, the taxonomy of SIP threat will be presented

    A survey on group signature schemes

    Get PDF
    Group Signature, extension of digital signature, allows members of a group to sign messages on behalf of the group, such that the resulting signature does not reveal the identity of the signer. Any client can verify the authenticity of the document by using the public key parameters of the group. In case of dispute, only a designated group manager, because of his special property, is able to open signatures, and thus reveal the signer’s identity. Its applications are widespread, especially in e-commerce such as e-cash, e-voting and e-auction. This thesis incorporates the detailed study of various group signature schemes, their cryptographic concepts and the main contributions in this field. We implemented a popular group signature scheme based upon elliptic curve cryptosystems. Moreover, the group signature is dynamic i.e. remains valid, if some members leave the group or some new members join the group. Full traceability feature is also included in the implemented scheme. For enhanced security the the scheme implements distributed roles of the group manager. We also analysed various security features, formal models, challenges and cryptanalysis of some significant contributions in this area

    Smart Cards to Enhance Security and Privacy in Biometrics

    Get PDF
    Smart cards are portable secure devices designed to hold personal and service information for many kind of applications. Examples of the use of smart cards are cell phone user identification (e.g. GSM SIM card), banking cards (e.g. EMV credit/debit cards) or citizen cards. Smart cards and Biometrics can be used jointly in different kinds of scenarios. Being a secure portable device, smart cards can be used for storing securely biometric references (e.g. templates) of the cardholder, perform biometric operations such as the comparison of an external biometric sample with the on-card stored biometric reference, or even relate operations within the card to the correct execution and result of those biometric operations. In order to provide the reader of the book with an overview of this technology, this chapter provides a description of smart cards, from their origin till the current technology involved, focusing especially in the security services they provide. Once the technology and the security services are introduced, the chapter will detail how smart cards can be integrated in biometric systems, which will be summarized in four different strategies: Store-on-Card, On-Card Biometric Comparison, Work-sharing Mechanism, and System-on-Card. Also the way to evaluate the joint use of smart cards and Biometrics will be described; both at the performance level, as well as its security. Last, but not least, this chapter will illustrate the collaboration of both technologies by providing two examples of current major deployments.Publicad

    PGMAP: a privacy guaranteed mutual authentication protocol conforming to EPC class 1 gen 2 standards

    Get PDF
    To resolve the security vulnerabilities and comply with EPC Class 1 Gen 2 UHF RFID (EPC C1G2) Standard at the same time, we present a Privacy Guaranteed Mutual Authentication Protocol (PGMAP). By utilizing the existing functions and memory bank of tag, we amend the processing sequence based on current EPC architecture. An auto-updating index number IDS is enrolled to provide privacy protection to EPC code and a set of light weight algorithms utilizing tag's PRNG are added for authentication. Several attacks to the existing security solutions can be effectively resolved in our protocol. © 2008 IEEE.published_or_final_versionThe IEEE International Conference on e-Business Engineering (ICEBE 2008), Xi'an, China, 22-24 October 2008. In Proceedings of ICEBE, 2008, p. 289-29

    Provable Secure and Efficient Digital Rights Management Authentication Scheme Using Smart Card Based on Elliptic Curve Cryptography

    Get PDF
    Since the concept of ubiquitous computing is firstly proposed by Mark Weiser, its connotation has been extending and expanding by many scholars. In pervasive computing application environment, many kinds of small devices containing smart cart are used to communicate with others. In 2013, Yang et al. proposed an enhanced authentication scheme using smart card for digital rights management. They demonstrated that their scheme is secure enough. However, Mishra et al. pointed out that Yang et al.’s scheme suffers from the password guessing attack and the denial of service attack. Moreover, they also demonstrated that Yang et al.’s scheme is not efficient enough when the user inputs an incorrect password. In this paper, we analyze Yang et al.’s scheme again, and find that their scheme is vulnerable to the session key attack. And, there are some mistakes in their scheme. To surmount the weakness of Yang et al.’s scheme, we propose a more efficient and provable secure digital rights management authentication scheme using smart card based on elliptic curve cryptography

    The development and use of the Secure Electronic Transaction (SET) protocol on the internet

    Get PDF
    While still in its infancy, Electronic Commerce is growing at an exponential rate each year (Walson, 1997. p.53). Although few doubt that such growth will only continue in years to come, many people still have serious reservations about the levels of security offered by currently available applications for conducting such trade. This thesis identifies some of the key areas of concern regarding Electronic Commerce on the lnternet, and looks at the ways in which the Secure Electronic Transaction (SET) model, proposed by Mastercard and Visa, succeeds or fails in addressing these concerns. It identifies and describes the key dements and primary functions of the SET protocols in a manner that will enable students and other interested parties to understand these protocols quickly and easily
    corecore