2,751 research outputs found

    Empirical Methodology for Crowdsourcing Ground Truth

    Full text link
    The process of gathering ground truth data through human annotation is a major bottleneck in the use of information extraction methods for populating the Semantic Web. Crowdsourcing-based approaches are gaining popularity in the attempt to solve the issues related to volume of data and lack of annotators. Typically these practices use inter-annotator agreement as a measure of quality. However, in many domains, such as event detection, there is ambiguity in the data, as well as a multitude of perspectives of the information examples. We present an empirically derived methodology for efficiently gathering of ground truth data in a diverse set of use cases covering a variety of domains and annotation tasks. Central to our approach is the use of CrowdTruth metrics that capture inter-annotator disagreement. We show that measuring disagreement is essential for acquiring a high quality ground truth. We achieve this by comparing the quality of the data aggregated with CrowdTruth metrics with majority vote, over a set of diverse crowdsourcing tasks: Medical Relation Extraction, Twitter Event Identification, News Event Extraction and Sound Interpretation. We also show that an increased number of crowd workers leads to growth and stabilization in the quality of annotations, going against the usual practice of employing a small number of annotators.Comment: in publication at the Semantic Web Journa

    Truth Is a Lie: Crowd Truth and the Seven Myths of Human Annotation

    Get PDF
    Big data is having a disruptive impact across the sciences. Human annotation of semantic interpretation tasks is a critical part of big data semantics, but it is based on an antiquated ideal of a single correct truth that needs to be similarly disrupted. We expose seven myths about human annotation, most of which derive from that antiquated ideal of truth, and dispell these myths with examples from our research. We propose a new theory of truth, crowd truth, that is based on the intuition that human interpretation is subjective, and that measuring annotations on the same objects of interpretation (in our examples, sentences) across a crowd will provide a useful representation of their subjectivity and the range of reasonable interpretations

    Capturing Ambiguity in Crowdsourcing Frame Disambiguation

    Full text link
    FrameNet is a computational linguistics resource composed of semantic frames, high-level concepts that represent the meanings of words. In this paper, we present an approach to gather frame disambiguation annotations in sentences using a crowdsourcing approach with multiple workers per sentence to capture inter-annotator disagreement. We perform an experiment over a set of 433 sentences annotated with frames from the FrameNet corpus, and show that the aggregated crowd annotations achieve an F1 score greater than 0.67 as compared to expert linguists. We highlight cases where the crowd annotation was correct even though the expert is in disagreement, arguing for the need to have multiple annotators per sentence. Most importantly, we examine cases in which crowd workers could not agree, and demonstrate that these cases exhibit ambiguity, either in the sentence, frame, or the task itself, and argue that collapsing such cases to a single, discrete truth value (i.e. correct or incorrect) is inappropriate, creating arbitrary targets for machine learning.Comment: in publication at the sixth AAAI Conference on Human Computation and Crowdsourcing (HCOMP) 201

    Modelling Instance-Level Annotator Reliability for Natural Language Labelling Tasks

    Full text link
    When constructing models that learn from noisy labels produced by multiple annotators, it is important to accurately estimate the reliability of annotators. Annotators may provide labels of inconsistent quality due to their varying expertise and reliability in a domain. Previous studies have mostly focused on estimating each annotator's overall reliability on the entire annotation task. However, in practice, the reliability of an annotator may depend on each specific instance. Only a limited number of studies have investigated modelling per-instance reliability and these only considered binary labels. In this paper, we propose an unsupervised model which can handle both binary and multi-class labels. It can automatically estimate the per-instance reliability of each annotator and the correct label for each instance. We specify our model as a probabilistic model which incorporates neural networks to model the dependency between latent variables and instances. For evaluation, the proposed method is applied to both synthetic and real data, including two labelling tasks: text classification and textual entailment. Experimental results demonstrate our novel method can not only accurately estimate the reliability of annotators across different instances, but also achieve superior performance in predicting the correct labels and detecting the least reliable annotators compared to state-of-the-art baselines.Comment: 9 pages, 1 figures, 10 tables, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL2019
    corecore