49,124 research outputs found

    A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users

    Full text link
    Spatial item recommendation has become an important means to help people discover interesting locations, especially when people pay a visit to unfamiliar regions. Some current researches are focusing on modelling individual and collective geographical preferences for spatial item recommendation based on users' check-in records, but they fail to explore the phenomenon of user interest drift across geographical regions, i.e., users would show different interests when they travel to different regions. Besides, they ignore the influence of public comments for subsequent users' check-in behaviors. Specifically, it is intuitive that users would refuse to check in to a spatial item whose historical reviews seem negative overall, even though it might fit their interests. Therefore, it is necessary to recommend the right item to the right user at the right location. In this paper, we propose a latent probabilistic generative model called LSARS to mimic the decision-making process of users' check-in activities both in home-town and out-of-town scenarios by adapting to user interest drift and crowd sentiments, which can learn location-aware and sentiment-aware individual interests from the contents of spatial items and user reviews. Due to the sparsity of user activities in out-of-town regions, LSARS is further designed to incorporate the public preferences learned from local users' check-in behaviors. Finally, we deploy LSARS into two practical application scenes: spatial item recommendation and target user discovery. Extensive experiments on two large-scale location-based social networks (LBSNs) datasets show that LSARS achieves better performance than existing state-of-the-art methods.Comment: Accepted by KDD 201

    TripleSent: a triple store of events associated with their prototypical sentiment

    Get PDF
    The current generation of sentiment analysis systems is limited in their real-world applicability because they cannot detect utterances that implicitly carry positive or negative sentiment. We present early stage research ideas to address this inability with the development of a dynamic triple store of events associated with their prototypical sentiment

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability

    Active learning in annotating micro-blogs dealing with e-reputation

    Full text link
    Elections unleash strong political views on Twitter, but what do people really think about politics? Opinion and trend mining on micro blogs dealing with politics has recently attracted researchers in several fields including Information Retrieval and Machine Learning (ML). Since the performance of ML and Natural Language Processing (NLP) approaches are limited by the amount and quality of data available, one promising alternative for some tasks is the automatic propagation of expert annotations. This paper intends to develop a so-called active learning process for automatically annotating French language tweets that deal with the image (i.e., representation, web reputation) of politicians. Our main focus is on the methodology followed to build an original annotated dataset expressing opinion from two French politicians over time. We therefore review state of the art NLP-based ML algorithms to automatically annotate tweets using a manual initiation step as bootstrap. This paper focuses on key issues about active learning while building a large annotated data set from noise. This will be introduced by human annotators, abundance of data and the label distribution across data and entities. In turn, we show that Twitter characteristics such as the author's name or hashtags can be considered as the bearing point to not only improve automatic systems for Opinion Mining (OM) and Topic Classification but also to reduce noise in human annotations. However, a later thorough analysis shows that reducing noise might induce the loss of crucial information.Comment: Journal of Interdisciplinary Methodologies and Issues in Science - Vol 3 - Contextualisation digitale - 201

    Revisiting the Importance of Encoding Logic Rules in Sentiment Classification

    Full text link
    We analyze the performance of different sentiment classification models on syntactically complex inputs like A-but-B sentences. The first contribution of this analysis addresses reproducible research: to meaningfully compare different models, their accuracies must be averaged over far more random seeds than what has traditionally been reported. With proper averaging in place, we notice that the distillation model described in arXiv:1603.06318v4 [cs.LG], which incorporates explicit logic rules for sentiment classification, is ineffective. In contrast, using contextualized ELMo embeddings (arXiv:1802.05365v2 [cs.CL]) instead of logic rules yields significantly better performance. Additionally, we provide analysis and visualizations that demonstrate ELMo's ability to implicitly learn logic rules. Finally, a crowdsourced analysis reveals how ELMo outperforms baseline models even on sentences with ambiguous sentiment labels.Comment: EMNLP 2018 Camera Read

    The Development of a Temporal Information Dictionary for Social Media Analytics

    Get PDF
    Dictionaries have been used to analyze text even before the emergence of social media and the use of dictionaries for sentiment analysis there. While dictionaries have been used to understand the tonality of text, so far it has not been possible to automatically detect if the tonality refers to the present, past, or future. In this research, we develop a dictionary containing time-indicating words in a wordlist (T-wordlist). To test how the dictionary performs, we apply our T-wordlist on different disaster related social media datasets. Subsequently we will validate the wordlist and results by a manual content analysis. So far, in this research-in-progress, we were able to develop a first dictionary and will also provide some initial insight into the performance of our wordlist
    corecore