554 research outputs found

    Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools

    Full text link
    Big data has been used widely in many areas including the transportation industry. Using various data sources, traffic states can be well estimated and further predicted for improving the overall operation efficiency. Combined with this trend, this study presents an up-to-date survey of open data and big data tools used for traffic estimation and prediction. Different data types are categorized and the off-the-shelf tools are introduced. To further promote the use of big data for traffic estimation and prediction tasks, challenges and future directions are given for future studies

    The Sensor Web: Unpredictable, Noisy and Loaded with Errors

    Full text link

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Recent Trends in Deep Learning Based Personality Detection

    Full text link
    Recently, the automatic prediction of personality traits has received a lot of attention. Specifically, personality trait prediction from multimodal data has emerged as a hot topic within the field of affective computing. In this paper, we review significant machine learning models which have been employed for personality detection, with an emphasis on deep learning-based methods. This review paper provides an overview of the most popular approaches to automated personality detection, various computational datasets, its industrial applications, and state-of-the-art machine learning models for personality detection with specific focus on multimodal approaches. Personality detection is a very broad and diverse topic: this survey only focuses on computational approaches and leaves out psychological studies on personality detection

    Geospatial crowdsourced data fitness analysis for spatial data infrastructure based disaster management actions

    Get PDF
    The reporting of disasters has changed from official media reports to citizen reporters who are at the disaster scene. This kind of crowd based reporting, related to disasters or any other events, is often identified as 'Crowdsourced Data' (CSD). CSD are freely and widely available thanks to the current technological advancements. The quality of CSD is often problematic as it is often created by the citizens of varying skills and backgrounds. CSD is considered unstructured in general, and its quality remains poorly defined. Moreover, the CSD's location availability and the quality of any available locations may be incomplete. The traditional data quality assessment methods and parameters are also often incompatible with the unstructured nature of CSD due to its undocumented nature and missing metadata. Although other research has identified credibility and relevance as possible CSD quality assessment indicators, the available assessment methods for these indicators are still immature. In the 2011 Australian floods, the citizens and disaster management administrators used the Ushahidi Crowd-mapping platform and the Twitter social media platform to extensively communicate flood related information including hazards, evacuations, help services, road closures and property damage. This research designed a CSD quality assessment framework and tested the quality of the 2011 Australian floods' Ushahidi Crowdmap and Twitter data. In particular, it explored a number of aspects namely, location availability and location quality assessment, semantic extraction of hidden location toponyms and the analysis of the credibility and relevance of reports. This research was conducted based on a Design Science (DS) research method which is often utilised in Information Science (IS) based research. Location availability of the Ushahidi Crowdmap and the Twitter data assessed the quality of available locations by comparing three different datasets i.e. Google Maps, OpenStreetMap (OSM) and Queensland Department of Natural Resources and Mines' (QDNRM) road data. Missing locations were semantically extracted using Natural Language Processing (NLP) and gazetteer lookup techniques. The Credibility of Ushahidi Crowdmap dataset was assessed using a naive Bayesian Network (BN) model commonly utilised in spam email detection. CSD relevance was assessed by adapting Geographic Information Retrieval (GIR) relevance assessment techniques which are also utilised in the IT sector. Thematic and geographic relevance were assessed using Term Frequency – Inverse Document Frequency Vector Space Model (TF-IDF VSM) and NLP based on semantic gazetteers. Results of the CSD location comparison showed that the combined use of non-authoritative and authoritative data improved location determination. The semantic location analysis results indicated some improvements of the location availability of the tweets and Crowdmap data; however, the quality of new locations was still uncertain. The results of the credibility analysis revealed that the spam email detection approaches are feasible for CSD credibility detection. However, it was critical to train the model in a controlled environment using structured training including modified training samples. The use of GIR techniques for CSD relevance analysis provided promising results. A separate relevance ranked list of the same CSD data was prepared through manual analysis. The results revealed that the two lists generally agreed which indicated the system's potential to analyse relevance in a similar way to humans. This research showed that the CSD fitness analysis can potentially improve the accuracy, reliability and currency of CSD and may be utilised to fill information gaps available in authoritative sources. The integrated and autonomous CSD qualification framework presented provides a guide for flood disaster first responders and could be adapted to support other forms of emergencies
    • …
    corecore