508 research outputs found

    Towards a Mathematical Theory of Behavioral Human Crowds

    Get PDF
    Nicola Bellomo acknowledges the support of the University of Granada, Project Modeling in Nature MNat from micro to macro, https://www.modelingnature.org.This paper has been partially supported by the MINECO-Feder (Spain) research Grant Number RTI2018-098850-B-I00, the Junta de Andalucia (Spain) Project PY18-RT-2422, A-FQM-311-UGR18, and B-FQM-580-UGR20. Livio Gibelli, gratefully acknowledges the financial support of the Engineering and Physical Sciences Research Council (EPSRC) Under Grants EP/N016602/1, EP/R007438/1. Annalisa Quaini acknowledges support from the Radcliffe Institute for Advanced Study at Harvard University where she has been a 2021-2022 William and Flora Hewlett Foundation Fellow. Alessandro Reali acknowledges the partial support of the MIUR-PRIN Project XFAST-SIMS (No. 20173C478N).The first part of our paper presents a general survey on the modeling, analytic problems, and applications of the dynamics of human crowds, where the specific features of living systems are taken into account in the modeling approach. This critical analysis leads to the second part which is devoted to research perspectives on modeling, analytic problems, multiscale topics which are followed by hints towards possible achievements. Perspectives include the modeling of social dynamics, multiscale problems and a detailed study of the link between crowds and swarms modeling.University of Granada, Project Modeling in Nature MNat from micro to macroSpanish Government RTI2018-098850-B-I00Junta de AndaluciaEuropean Commission PY18-RT-2422 A-FQM-311-UGR18 B-FQM-580-UGR20UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) EP/N016602/1 EP/R007438/1Radcliffe Institute for Advanced Study at Harvard UniversityMinistry of Education, Universities and Research (MIUR) 20173C478

    A roadmap for the future of crowd safety research and practice: Introducing the Swiss Cheese Model of Crowd Safety and the imperative of a Vision Zero target

    Get PDF
    Crowds can be subject to intrinsic and extrinsic sources of risk, and previous records have shown that, in the absence of adequate safety measures, these sources of risk can jeopardise human lives. To mitigate these risks, we propose that implementation of multiple layers of safety measures for crowds—what we label The Swiss Cheese Model of Crowd Safety—should become the norm for crowd safety practice. Such system incorporates a multitude of safety protection layers including regulations and policymaking, planning and risk assessment, operational control, community preparedness, and incident response. The underlying premise of such model is that when one (or multiple) layer(s) of safety protection fail(s), the other layer(s) can still prevent an accident. In practice, such model requires a more effective implementation of technology, which can enable provision of real-time data, improved communication and coordination, and efficient incident response. Moreover, implementation of this model necessitates more attention to the overlooked role of public education, awareness raising, and promoting crowd safety culture at broad community levels, as one of last lines of defence against catastrophic outcomes for crowds. Widespread safety culture and awareness has the potential to empower individuals with the knowledge and skills that can prevent such outcomes or mitigate their impacts, when all other (exogenous) layers of protection (such as planning and operational control) fail. This requires safety campaigns and development of widespread educational programs. We conclude that, there is no panacea solution to the crowd safety problem, but a holistic multi-layered safety system that utilises active participation of all potential stakeholders can significantly reduce the likelihood of disastrous accidents. At a global level, we need to target a Vision Zero of Crowd Safety, i.e., set a global initiative of bringing deaths and severe injuries in crowded spaces to zero by a set year

    Multi-scale Models for Transportation Systems Under Emergency Conditions

    Get PDF
    The purpose of this study is to investigate human behavior in emergencies. More specifically, agent-based simulation and social force models were developed to examine the impact of various human and environmental factors on the efficiency of the evacuation process, through a series of case studies. The independent variables of the case studies include the number of exits, the number of passengers, the evacuation policies, and instructions, as well as the queue configuration and wall separators. The results revealed the location of the exits, number of exits, evacuation strategies, and group behaviors all significantly impact the total time of the evacuation. For the queue configuration, short aisles lower infection spread when rope separators were used. The findings provide new insights in designing layout, planning, practice, and training strategies for improving the effectiveness of the pedestrian evacuation process under emergency

    Panic, irrationality, herding: Three ambiguous terms in crowd dynamics research

    Get PDF
    Background: The three terms “panic”, “irrationality” and “herding” are ubiquitous in the crowd dynamics literature and have a strong influence on both modelling and management practices. The terms are also commonly shared between the scientific and non-scientific domains. The pervasiveness of the use of these terms is to the point where their underlying assumptions have often been treated as common knowledge by both experts and lay persons. Yet, at the same time, the literature on crowd dynamics presents ample debate, contradiction and inconsistency on these topics. Method: This review is the first to systematically revisit these three terms in a unified study to highlight the scope of this debate. We extracted from peer-reviewed journal articles direct quotes that offer a definition, conceptualisation or supporting/contradicting evidence on these terms and/or their underlying theories. To further examine the suitability of the term herding, a secondary and more detailed analysis is also conducted on studies that have specifically investigated this phenomenon in empirical settings. Results. The review shows that (i) there is no consensus on the definition for the terms panic and irrationality; and that (ii) the literature is highly divided along discipline lines on how accurate these theories/terminologies are for describing human escape behaviour. The review reveals a complete division and disconnection between studies published by social scientists and those from the physical science domain; also, between studies whose main focus is on numerical simulation versus those with empirical focus. (iii) Despite the ambiguity of the definitions and the missing consensus in the literature, these terms are still increasingly and persistently mentioned in crowd evacuation studies. (iv) Different to panic and irrationality, there is relative consistency in definitions of the term herding, with the term usually being associated with ‘(blind) imitation’. However, based on the findings of empirical studies, we argue why, despite the relative consistency in meaning, (v) the term herding itself lacks adequate nuance and accuracy for describing the role of ‘social influence’ in escape behaviour. Our conclusions also emphasise the importance of distinguishing between the social influence on various aspects of evacuation behaviour and avoiding generalisation across various behavioural layers. Conclusions. We argue that the use of these three terms in the scientific literature does not contribute constructively to extending the knowledge or to improving the modelling capabilities in the field of crowd dynamics. This is largely due to the ambiguity of these terms, the overly simplistic nature of their assumptions, or the fact that the theories they represent are not readily verifiable. Recommendations: We suggest that it would be beneficial for advancing this research field that the phenomena related to these three terms are clearly defined by more tangible and quantifiable terms and be formulated as verifiable hypotheses, so they can be operationalised for empirical testing

    Towards effective evacuation procedures in disaster management (Dm): Simulation modelling and governance strategies

    Get PDF
    Natural catastrophes and disasters may cause the destruction of infrastructure and personal property. In order to reduce the effects of such tragedies, the effectiveness of the evacuation procedures is essential. Effective evacuation procedures, however, also depend on governance issues in addition to technical aspects like infrastructure and communication. This paper intends to review on how governance, and evacuation protocols relate to emergency preparedness and disaster management (DM). Thus, this study explores the use of agent-based and social force theory in developing evacuation simulation models that incorporate evacuation governance strategies. Practitioners and policymakers can better understand the elements that determine the effectiveness of evacuation procedures and create more efficient methods for disaster management and emergency response by modelling human behaviour in disaster circumstances. The policy is an illustration of how governance elements can be integrated into evacuation procedures and guidelines for effective DM. Thus, the expected result for this study emphasises the significance of governance for policymakers and practitioners in the execution of evacuation procedures

    Critical Market Crashes

    Full text link
    This review is a partial synthesis of the book ``Why stock market crash'' (Princeton University Press, January 2003), which presents a general theory of financial crashes and of stock market instabilities that his co-workers and the author have developed over the past seven years. The study of the frequency distribution of drawdowns, or runs of successive losses shows that large financial crashes are ``outliers'': they form a class of their own as can be seen from their statistical signatures. If large financial crashes are ``outliers'', they are special and thus require a special explanation, a specific model, a theory of their own. In addition, their special properties may perhaps be used for their prediction. The main mechanisms leading to positive feedbacks, i.e., self-reinforcement, such as imitative behavior and herding between investors are reviewed with many references provided to the relevant literature outside the confine of Physics. Positive feedbacks provide the fuel for the development of speculative bubbles, preparing the instability for a major crash. We demonstrate several detailed mathematical models of speculative bubbles and crashes. The most important message is the discovery of robust and universal signatures of the approach to crashes. These precursory patterns have been documented for essentially all crashes on developed as well as emergent stock markets, on currency markets, on company stocks, and so on. The concept of an ``anti-bubble'' is also summarized, with two forward predictions on the Japanese stock market starting in 1999 and on the USA stock market still running. We conclude by presenting our view of the organization of financial markets.Comment: Latex 89 pages and 38 figures, in press in Physics Report
    • 

    corecore