16 research outputs found

    A Comparison of Image Processing Techniques for Bird Detection

    Get PDF
    Orchard fruits and vegetable crops are vulnerable to wild birds and animals. These wild birds and animals can cause critical damage to the produce. Traditional methods of scaring away birds such as scarecrows are not long-term solutions but short-term solutions. This is a huge problem especially near areas like San Luis Obispo where there are vineyards. Bird damage can be as high as 50% for grapes being grown in vineyards. The total estimated revenue lost annually in the 10 counties in California due to bird and rodent damage to 22 selected crops ranged from 168millionto168 million to 504 million (in 2009 dollars). A more effective and permanent system needs to be put into place. Monitoring systems in agricultural settings could potentially provide a lot of data for image processing. Most current monitoring systems however don’t focus on image processing but instead really heavily on sensors. Just having sensors for certain systems work, but for birds, monitoring it is not an option because they are not domesticated like pigs, cows etc. in which most these agricultural monitoring systems work on. Birds can fly in and out of the area whereas domesticated animals can be confined to certain physical regions. The most crucial step in a smart scarecrow system would be how a threat would v be detected. Image processing methods can be effectively applied to detecting items in video footage. This paper will focus on bird detection and will analyze motion detection with image subtraction, bird detection with template matching, and bird detection with the Viola-Jones Algorithm. Of the methods considered, bird detection with the Viola-Jones Algorithm had the highest accuracy (87%) with a somewhat low false positive rate. This image processing step would ideally be incorporated with hardware (such as a microcontroller or FPGA, sensors, a camera etc.) to form a smart scarecrow system

    Removing Human Bottlenecks in Bird Classification Using Camera Trap Images and Deep Learning

    Get PDF
    Birds are important indicators for monitoring both biodiversity and habitat health; they also play a crucial role in ecosystem management. Declines in bird populations can result in reduced ecosystem services, including seed dispersal, pollination and pest control. Accurate and long-term monitoring of birds to identify species of concern while measuring the success of conservation interventions is essential for ecologists. However, monitoring is time-consuming, costly and often difficult to manage over long durations and at meaningfully large spatial scales. Technology such as camera traps, acoustic monitors and drones provide methods for non-invasive monitoring. There are two main problems with using camera traps for monitoring: (a) cameras generate many images, making it difficult to process and analyse the data in a timely manner; and (b) the high proportion of false positives hinders the processing and analysis for reporting. In this paper, we outline an approach for overcoming these issues by utilising deep learning for real-time classification of bird species and automated removal of false positives in camera trap data. Images are classified in real-time using a Faster-RCNN architecture. Images are transmitted over 3/4G cameras and processed using Graphical Processing Units (GPUs) to provide conservationists with key detection metrics, thereby removing the requirement for manual observations. Our models achieved an average sensitivity of 88.79%, a specificity of 98.16% and accuracy of 96.71%. This demonstrates the effectiveness of using deep learning for automatic bird monitoring

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore