85 research outputs found

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    Reliability-Performance Trade-offs in Photonic NoC Architectures

    Get PDF
    Advancements in the field of chip fabrication has facilitated in integrating more number of transistors in a given area which lead to the era of multi-core processors. Interconnect became the bottleneck for the multi-core processors as the number of cores in a chip increased. The traditional bus based architectures, which are currently used in the processors, cannot scale up to support the increasing number of cores in a multi-core chip. Hence, Network-on-Chip (NoC) is the preferred communication backbone for modern multicore chips. However, the multi-hop data transmission using wireline interconnects result in high energy dissipation and latency. Hence, many alternative interconnect technologies have been proposed such as 3D, wireless, and photonic interconnects. These interconnect technologies have their own advantages and disadvantages. Photonic interconnects have emerged as a promising alternative to the conventional metal/dielectric based on-chip wireline interconnects. Several novel architectures have been proposed using photonic waveguides as interconnects, which are capable of reducing the energy dissipation in data transfer significantly. However, the issues of reliability arising due to waveguide losses and adjacent channel crosstalk in photonic waveguides have not received much attention till date. In this paper we propose and evaluate the performance of a photonic NoC architecture designed by segmenting the waveguides into smaller parts to limit the waveguide losses and signal degradation from electro-optic devices. Through detailed system level simulations in this work we compare the performance of the MSB-PNoC with other PNoC architectures proposed in the recent literature and establish its gains over completely electronic mesh based counterparts

    Overcoming the Challenges for Multichip Integration: A Wireless Interconnect Approach

    Get PDF
    The physical limitations in the area, power density, and yield restrict the scalability of the single-chip multicore system to a relatively small number of cores. Instead of having a large chip, aggregating multiple smaller chips can overcome these physical limitations. Combining multiple dies can be done either by stacking vertically or by placing side-by-side on the same substrate within a single package. However, in order to be widely accepted, both multichip integration techniques need to overcome significant challenges. In the horizontally integrated multichip system, traditional inter-chip I/O does not scale well with technology scaling due to limitations of the pitch. Moreover, to transfer data between cores or memory components from one chip to another, state-of-the-art inter-chip communication over wireline channels require data signals to travel from internal nets to the peripheral I/O ports and then get routed over the inter-chip channels to the I/O port of the destination chip. Following this, the data is finally routed from the I/O to internal nets of the target chip over a wireline interconnect fabric. This multi-hop communication increases energy consumption while decreasing data bandwidth in a multichip system. On the other hand, in vertically integrated multichip system, the high power density resulting from the placement of computational components on top of each other aggravates the thermal issues of the chip leading to degraded performance and reduced reliability. Liquid cooling through microfluidic channels can provide cooling capabilities required for effective management of chip temperatures in vertical integration. However, to reduce the mechanical stresses and at the same time, to ensure temperature uniformity and adequate cooling competencies, the height and width of the microchannels need to be increased. This limits the area available to route Through-Silicon-Vias (TSVs) across the cooling layers and make the co-existence and co-design of TSVs and microchannels extreamly challenging. Research in recent years has demonstrated that on-chip and off-chip wireless interconnects are capable of establishing radio communications within as well as between multiple chips. The primary goal of this dissertation is to propose design principals targeting both horizontally and vertically integrated multichip system to provide high bandwidth, low latency, and energy efficient data communication by utilizing mm-wave wireless interconnects. The proposed solution has two parts: the first part proposes design methodology of a seamless hybrid wired and wireless interconnection network for the horizontally integrated multichip system to enable direct chip-to-chip communication between internal cores. Whereas the second part proposes a Wireless Network-on-Chip (WiNoC) architecture for the vertically integrated multichip system to realize data communication across interlayer microfluidic coolers eliminating the need to place and route signal TSVs through the cooling layers. The integration of wireless interconnect will significantly reduce the complexity of the co-design of TSV based interconnects and microchannel based interlayer cooling. Finally, this dissertation presents a combined trade-off evaluation of such wireless integration system in both horizontal and vertical sense and provides future directions for the design of the multichip system

    A Resilient 2-D Waveguide Communication Fabric for Hybrid Wired-Wireless NoC Design

    Get PDF
    Hybrid wired-wireless Network-on-Chip (WiNoC) has emerged as an alternative solution to the poor scalability and performance issues of conventional wireline NoC design for future System-on-Chip (SoC). Existing feasible wireless solution for WiNoCs in the form of millimeter wave (mm-Wave) relies on free space signal radiation which has high power dissipation with high degradation rate in the signal strength per transmission distance. Moreover, over the lossy wireless medium, combining wireless and wireline channels drastically reduces the total reliability of the communication fabric. Surface wave has been proposed as an alternative wireless technology for low power on-chip communication. With the right design considerations, the reliability and performance benefits of the surface wave channel could be extended. In this paper, we propose a surface wave communication fabric for emerging WiNoCs that is able to match the reliability of traditional wireline NoCs. First, we propose a realistic channel model which demonstrates that existing mm-Wave WiNoCs suffers from not only free-space spreading loss (FSSL) but also molecular absorption attenuation (MAA), especially at high frequency band, which reduces the reliability of the system. Consequently, we employ a carefully designed transducer and commercially available thin metal conductor coated with a low cost dielectric material to generate surface wave signals with improved transmission gain. Our experimental results demonstrate that the proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz). By improving the transmission reliability of wireless layer, the proposed communication fabric can improve maximum sustainable load of NoCs by an average of 20:9% and 133:3% compared to existing WiNoCs and wireline NoCs, respectively

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    A resilient 2-D waveguide communication fabric for hybrid wired-wireless NoC design

    Get PDF
    Hybrid wired-wireless Network-on-Chip (WiNoC) has emerged as an alternative solution to the poor scalability and performance issues of conventional wireline NoC design for future System-on-Chip (SoC). Existing feasible wireless solution for WiNoCs in the form of millimeter wave (mm-Wave) relies on free space signal radiation which has high power dissipation with high degradation rate in the signal strength per transmission distance. Moreover, over the lossy wireless medium, combining wireless and wireline channels drastically reduces the total reliability of the communication fabric. Surface wave has been proposed as an alternative wireless technology for low power on-chip communication. With the right design considerations, the reliability and performance benefits of the surface wave channel could be extended. In this paper, we propose a surface wave communication fabric for emerging WiNoCs that is able to match the reliability of traditional wireline NoCs. First, we propose a realistic channel model which demonstrates that existing mm-Wave WiNoCs suffers from not only free-space spreading loss (FSSL) but also molecular absorption attenuation (MAA), especially at high frequency band, which reduces the reliability of the system. Consequently, we employ a carefully designed transducer and commercially available thin metal conductor coated with a low cost dielectric material to generate surface wave signals with improved transmission gain. Our experimental results demonstrate that the proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz). By improving the transmission reliability of wireless layer, the proposed communication fabric can improve maximum sustainable load of NoCs by an average of 20:9% and 133:3% compared to existing WiNoCs and wireline NoCs, respectively

    Circuit design and analysis for on-FPGA communication systems

    No full text
    On-chip communication system has emerged as a prominently important subject in Very-Large- Scale-Integration (VLSI) design, as the trend of technology scaling favours logics more than interconnects. Interconnects often dictates the system performance, and, therefore, research for new methodologies and system architectures that deliver high-performance communication services across the chip is mandatory. The interconnect challenge is exacerbated in Field-Programmable Gate Array (FPGA), as a type of ASIC where the hardware can be programmed post-fabrication. Communication across an FPGA will be deteriorating as a result of interconnect scaling. The programmable fabrics, switches and the specific routing architecture also introduce additional latency and bandwidth degradation further hindering intra-chip communication performance. Past research efforts mainly focused on optimizing logic elements and functional units in FPGAs. Communication with programmable interconnect received little attention and is inadequately understood. This thesis is among the first to research on-chip communication systems that are built on top of programmable fabrics and proposes methodologies to maximize the interconnect throughput performance. There are three major contributions in this thesis: (i) an analysis of on-chip interconnect fringing, which degrades the bandwidth of communication channels due to routing congestions in reconfigurable architectures; (ii) a new analogue wave signalling scheme that significantly improves the interconnect throughput by exploiting the fundamental electrical characteristics of the reconfigurable interconnect structures. This new scheme can potentially mitigate the interconnect scaling challenges. (iii) a novel Dynamic Programming (DP)-network to provide adaptive routing in network-on-chip (NoC) systems. The DP-network architecture performs runtime optimization for route planning and dynamic routing which, effectively utilizes the in-silicon bandwidth. This thesis explores a new horizon in reconfigurable system design, in which new methodologies and concepts are proposed to enhance the on-FPGA communication throughput performance that is of vital importance in new technology processes

    A resilient 2-D waveguide communication fabric for hybrid wired-wireless NoC design

    Get PDF
    Hybrid wired-wireless Network-on-Chip (WiNoC) has emerged as an alternative solution to the poor scalability and performance issues of conventional wireline NoC design for future System-on-Chip (SoC). Existing feasible wireless solution for WiNoCs in the form of millimeter wave (mm-Wave) relies on free space signal radiation which has high power dissipation with high degradation rate in the signal strength per transmission distance. Moreover, over the lossy wireless medium, combining wireless and wireline channels drastically reduces the total reliability of the communication fabric. Surface wave has been proposed as an alternative wireless technology for low power on-chip communication. With the right design considerations, the reliability and performance benefits of the surface wave channel could be extended. In this paper, we propose a surface wave communication fabric for emerging WiNoCs that is able to match the reliability of traditional wireline NoCs. First, we propose a realistic channel model which demonstrates that existing mm-Wave WiNoCs suffers from not only free-space spreading loss (FSSL) but also molecular absorption attenuation (MAA), especially at high frequency band, which reduces the reliability of the system. Consequently, we employ a carefully designed transducer and commercially available thin metal conductor coated with a low cost dielectric material to generate surface wave signals with improved transmission gain. Our experimental results demonstrate that the proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz). By improving the transmission reliability of wireless layer, the proposed communication fabric can improve maximum sustainable load of NoCs by an average of 20.9% and 133.3% compared to existing WiNoCs and wireline NoCs, respectively

    On Fault Tolerance Methods for Networks-on-Chip

    Get PDF
    Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levelsSiirretty Doriast
    • …
    corecore