136 research outputs found

    Low Noise and High Photodetection Probability SPAD in 180 nm Standard CMOS Technology

    Get PDF
    A square shaped, low noise and high photo-response single photon avalanche diode suitable for circuit integration, implemented in a standard CMOS 180 nm high voltage technology, is presented. In this work, a p+ to shallow n-well junction was engineered with a very smooth electric field profile guard ring to attain a photo detection probability peak higher than 50% with a median dark count rate lower than 2 Hz/μm2 when operated at an excess bias of 4 V. The reported timing jitter full width at half maximum is below 300 ps for 640 nm laser pulses

    Imaging Probe for Charged Particle Detection

    Get PDF
    Single Photon Avalanche Diodes (SPADs) are semiconductor devices that detect individual photons. However, they can also experience dark count rate (DCR), generating avalanche current even when no photons are present, which limits their ability to detect low-level signals. SPADs characterization is important to gain insight into their behavior and improve their performance for various applications. This thesis discusses the development of a portable detection probe that uses the APIX2LF chip, which contains arrays of SPADs that were produced using a 150 nm standard CMOS process. A prototype board, that includes a battery, front-end electronics, and a microcontroller acting as the interface between the sensor and the PC was developed and tested using a beta-emitting source. Additionally, custom firmware was designed for the microcontroller and an automatic data acquisition framework was developed for the characterization of the DCR of six APIX2LF chips at different bias voltages and temperatures.This thesis discusses the development of a portable detection probe that uses the APIX2LF chip, which contains arrays of SPADs that were produced using a 150 nm standard CMOS process. A prototype board, that includes a battery, front-end electronics, and a microcontroller acting as the interface between the sensor and the PC was developed and tested using a beta-emitting source. Additionally, custom firmware was designed for the microcontroller and an automatic data acquisition framework was developed for the characterization of the DCR of six APIX2LF chips at different bias voltages and temperatures

    Optical Crosstalk in InGaAs/InP SPAD Array: Analysis and Reduction with FIB-Etched Trenches

    Get PDF
    This letter describes the reduction of optical crosstalk by means of focused ion beam-etched trenches in InGaAs/InP single-photon avalanche diode arrays. Platinum-filled trenches have been fabricated in a linear array in order to limit the direct optical crosstalk between neighboring pixels. Experimental measurements prove that optical crosstalk has been reduced by ∼60 % thanks to a strong suppression of direct optical paths. An optical model is introduced in order to describe the main contributions to crosstalk and to validate measurements

    Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications

    Get PDF
    Photonic quantum technologies promise a revolution of the world of information processing, from simulation and computing to communication and sensing, thanks to the many advantages of exploiting single photons as quantum information carriers. In this scenario, single-photon detectors play a key role. On the one hand, superconducting nanowire single-photon detectors (SNSPDs) are able to provide remarkable performance on a broad spectral range, but their applicability is often limited by the need of cryogenic operating temperatures. On the other hand, single-photon avalanche diodes (SPADs) overcome the intrinsic limitations of SNSPDs by providing a valid alternative at room temperature or slightly below. In this paper, we review the fundamental principles of the SPAD operation and we provide a thorough discussion of the recent progress made in this field, comparing the performance of these devices with the requirements of the quantum photonics applications. In the end, we conclude with our vision of the future by summarizing prospects and unbeaten paths that can open new perspectives in the field of photonic quantum information processing

    Direct Time of Flight Single Photon Imaging

    Get PDF

    A portable device for time-resolved fluorescence based on an array of CMOS SPADs with integrated microfluidics

    Get PDF
    [eng] Traditionally, molecular analysis is performed in laboratories equipped with desktop instruments operated by specialized technicians. This paradigm has been changing in recent decades, as biosensor technology has become as accurate as desktop instruments, providing results in much shorter periods and miniaturizing the instrumentation, moving the diagnostic tests gradually out of the central laboratory. However, despite the inherent advantages of time-resolved fluorescence spectroscopy applied to molecular diagnosis, it is only in the last decade that POC (Point Of Care) devices have begun to be developed based on the detection of fluorescence, due to the challenge of developing high-performance, portable and low-cost spectroscopic sensors. This thesis presents the development of a compact, robust and low-cost system for molecular diagnosis based on time-resolved fluorescence spectroscopy, which serves as a general-purpose platform for the optical detection of a variety of biomarkers, bridging the gap between the laboratory and the POC of the fluorescence lifetime based bioassays. In particular, two systems with different levels of integration have been developed that combine a one-dimensional array of SPAD (Single-Photon Avalanch Diode) pixels capable of detecting a single photon, with an interchangeable microfluidic cartridge used to insert the sample and a laser diode Pulsed low-cost UV as a source of excitation. The contact-oriented design of the binomial formed by the sensor and the microfluidic, together with the timed operation of the sensors, makes it possible to dispense with the use of lenses and filters. In turn, custom packaging of the sensor chip allows the microfluidic cartridge to be positioned directly on the sensor array without any alignment procedure. Both systems have been validated, determining the decomposition time of quantum dots in 20 nl of solution for different concentrations, emulating a molecular test in a POC device.[cat] Tradicionalment, l'anàlisi molecular es realitza en laboratoris equipats amb instruments de sobretaula operats per tècnics especialitzats. Aquest paradigma ha anat canviant en les últimes dècades, a mesura que la tecnologia de biosensor s'ha tornat tan precisa com els instruments de sobretaula, proporcionant resultats en períodes molt més curts de temps i miniaturitzant la instrumentació, permetent així, traslladar gradualment les proves de diagnòstic fora de laboratori central. No obstant això i malgrat els avantatges inherents de l'espectroscòpia de fluorescència resolta en el temps aplicada a la diagnosi molecular, no ha estat fins a l'última dècada que s'han començat a desenvolupar dispositius POC (Point Of Care) basats en la detecció de la fluorescència, degut al desafiament que suposa el desenvolupament de sensors espectroscòpics d'alt rendiment, portàtils i de baix cost. Aquesta tesi presenta el desenvolupament d'un sistema compacte, robust i de baix cost per al diagnòstic molecular basat en l'espectroscòpia de fluorescència resolta en el temps, que serveixi com a plataforma d'ús general per a la detecció òptica d'una varietat de biomarcadors, tancant la bretxa entre el laboratori i el POC dels bioassaigs basats en l'anàlisi de la pèrdua de la fluorescència. En particular, s'han desenvolupat dos sistemes amb diferents nivells d'integració que combinen una matriu unidimensional de píxels SPAD (Single-Photon Avalanch Diode) capaços de detectar un sol fotó, amb un cartutx microfluídic intercanviable emprat per inserir la mostra, així com un díode làser UV premut de baix cost com a font d'excitació. El disseny orientat a la detecció per contacte de l'binomi format pel sensor i la microfluídica, juntament amb l'operació temporitzada dels sensors, permet prescindir de l'ús de lents i filtres. Al seu torn, l'empaquetat a mida de l'xip sensor permet posicionar el cartutx microfluídic directament sobre la matriu de sensors sense cap procediment d'alineament. Tots dos sistemes han estat validats determinant el temps de descomposició de "quantum dots" en 20 nl de solució per a diferents concentracions, emulant així un assaig molecular en un dispositiu POC
    corecore