38 research outputs found

    Aqua MODIS Electronic Crosstalk on SMWIR Bands 20 to 26

    Full text link
    Aqua MODIS Moon images obtained with bands 20 to 26 (3.66 - 4.55 and 1.36 - 1.39 \mum) during scheduled lunar events show evidence of electronic crosstalk contamination of the response of detector 1. In this work, we determined the sending bands for each receiving band. We found that the contaminating signal originates, in all cases, from the detector 10 of the corresponding sending band and that the signals registered by the receiving and sending detectors are always read out in immediate sequence. We used the lunar images to derive the crosstalk coefficients, which were then applied in the correction of electronic crosstalk striping artifacts present in L1B images, successfully restoring product quality.Comment: Accepted to be published in the IEEE 2017 International Geoscience & Remote Sensing Symposium (IGARSS 2017), scheduled for July 23-28, 2017 in Fort Worth, Texas, US

    Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    Get PDF
    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur

    Noise Characterization and Performance of MODIS Thermal Emissive Bands

    Get PDF
    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for the TEB for both instruments is reported to provide the science user communities quality control of the MODIS Level 1B calibrated product

    JPSS-1 VIIRS Radiometric Characterization and Calibration Based on Pre-Launch Testing

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument has 22 spectral bands covering the spectrum between 0.4 and 12.6 m. It is a cross-track scanning radiometer capable of providing global measurements twice daily, through observations at two spatial resolutions, 375 m and 750 m at nadir for the imaging and moderate bands, respectively. This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the government independent team to generate the at-launch baseline radiometric performance and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), radiance dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, spectral performance, response-vs-scan (RVS), and scattered light response. A set of performance metrics generated during the pre-launch testing program will be compared to both the VIIRS sensor specification and the SNPP VIIRS pre-launch performance

    On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands

    Get PDF
    Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS

    NPP VIIRS On-Orbit Calibration and Characterization Using the Moon

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polar orbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2011. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56 deg to -55 deg in the first three scheduled lunar observations and then changed to the range from -51.5 deg to -50.5 deg, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14 deg, 0 deg] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration

    Sensor Performance Assessment for Terra and Aqua MODIS Using Unscheduled Lunar Observations

    Get PDF
    The Moderate Resolution Imaging Spectroradiometer (MODIS) has been in operation for over 18 and 16 years on the Terra and Aqua spacecrafts, respectively. In order to maintain long-term calibration stability over the life of each mission, MODIS uses a set of on-board calibrators as well as observations of the Moon and selected Earth-view targets. The lunar observations nominally occur in a narrow phase angle range, 55 degrees - 56 degrees, and use scheduled spacecraft maneuvers in order to bring the Moon into alignment with the MODIS space-view port. These observations are used to help characterize the MODIS scan-mirror response versus scan-angle. In addition to these scheduled lunar observations, MODIS also views the Moon through the space-view port without a spacecraft maneuver when the geometry is appropriately aligned. This occurs over a wider phase angle range, between 51 degrees - 82 degrees, than those of the scheduled moon observations. While the phase angle restriction of our scheduled observations provides consistency between the calibration events, the unscheduled Moon data can provide a valuable assessment of many calibration related investigations that use the Moon. In this paper, we compare the results of unscheduled versus scheduled lunar observations for several sensor calibration and performance assessments. These include the lunar calibration trending used to characterize the scan-mirror response versus scan angle and the electronic crosstalk correction of bands 27-30, which are currently used in the MODIS Level-1B data products, as well as sensor performance assessments such as band-to-band and detector-to-detector spatial registration

    MODIS. Volume 2: MODIS level 1 geolocation, characterization and calibration algorithm theoretical basis document, version 1

    Get PDF
    The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details

    A System Trade Study of Remote Infrared Imaging for Space Shuttle Reentry

    Get PDF
    A trade study reviewing the primary operational parameters concerning the deployment of imaging assets in support of the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was undertaken. The objective was to determine key variables and constraints for obtaining thermal images of the Space Shuttle orbiter during reentry. The trade study investigated the performance characteristics and operating environment of optical instrumentation that may be deployed during a HYTHIRM data collection mission, and specified contributions to the Point Spread Function. It also investigated the constraints that have to be considered in order to optimize deployment through the use of mission planning tools. These tools simulate the radiance modeling of the vehicle as well as the expected spatial resolution based on the Orbiter trajectory and placement of land based or airborne optical sensors for given Mach numbers. Lastly, this report focused on the tools and methodology that have to be in place for real-time mission planning in order to handle the myriad of variables such as trajectory ground track, weather, and instrumentation availability that may only be known in the hours prior to landing
    corecore