45 research outputs found

    Physical Layer Techniques for High Frequency Wireline Broadband Systems

    Get PDF
    This thesis collects contributions to wireline and wireless communication systems with an emphasis on multiuser and multicarrier physical layer technology. To deliver increased capacity, modern wireline access systems such as G.fast extend the signal bandwidth up from tens to hundreds of MHz. This ambitious development revealed a number of unforeseen hurdles such as the impact of impedance changes in various forms. Impedance changes have a strong effect on the performance of multi-user crosstalk mitigation techniques such as vectoring. The first part of the thesis presents papers covering the identification of one of these problems, a model describing why it occurs and a method to mitigate its effects, improving line stability for G.fast systems.A second part of the thesis deals with the effects of temperature changes on wireline channels. When a vectored (MIMO) wireline system is initialized, channel estimates need to be obtained. This thesis presents contributions on the feasibility of re-using channel coefficients to speed up the vectoring startup procedures, even after the correct coefficients have changed, e.g., due to temperature changes. We also present extensive measurement results showing the effects of temperature changes on copper channels using a temperature chamber and British cables. The last part of the thesis presents three papers on the convergence of physical layer technologies, more specifically the deployment of OFDM-based radio systems using twisted pairs in different ways. In one proposed scenario, the idea of using the access copper lines to deploy small cells inside users' homes is explored. The feasibility of the concept, the design of radio-heads and a practical scheme for crosstalk mitigation are presented in three contributions

    Performance Enhancement in Copper Twisted Pair Cable Communications

    Get PDF
    The thesis focuses on the area of copper twisted pair based wireline communications. As one of the most widely deployed communication media, the copper twisted pair cable plays an important role in the communication network cabling infrastructure. This thesis looks to exploit diversity to improve twisted pair channels for data communications in two common application areas, namely Ethernet over Twisted Paris and digital subscriber line over twisted pair based telephone network. The first part of the thesis addresses new approaches to next generation Ethernet over twisted pair cable. The coming challenge for Ethernet over twisted pair cable is to realise a higher data rate beyond the 25/40GBASE-T standard, in relatively short reach scenarios. The straight-forward approaches, such as improving cable quality and extending frequency bandwidth, are unlikely to provide significant improvement in terms of data rate. However, other system diversities, such as spectrum utilization are yet to be fully exploited, so as to meet the desired data rate performance. The current balanced transmission over the structured twisted pair cable and its parallel single-in-single-out channel model is revisited and formulated as a full-duplex multiple-in-multiple-out (MIMO) channel model. With a common ground (provided by the cable shield), the balanced transmission is converted into unbalanced transmission, by replacing the differential-mode excitation with single-ended excitation. In this way, MIMO adoption may offer spectrum utilization advantages due to the doubled number of the channels. The S-parameters of the proposed MIMO channel model is obtained through the full wave electromagnetic simulation of a short CAT7A cable. The channel models are constructed from the resulting S-parameters, also the corresponding theoretical capacity is evaluated by exploiting different diversity scenarios. With higher spectrum efficiency, the orthogonal-frequency-division-multiplexing (OFDM) modulation can significantly improve the theoretical capacity compared with single-carrier modulation, where the channel frequency selectivity is aided. The MIMO can further enhance the capacity by minimising the impact of the crosstalk. When the crosstalk is properly handled under the unbalanced transmission, this thesis shows that the theoretical capacity of the EoTP cable can reach nearly 200GBit/s. In order to further extend the bandwidth capability of twisted pair cables, Phantom Mode transmission is studied, aiming at creating more channels under balanced transmission operation. The second part of the thesis focuses on the research of advanced scheduling algorithms for VDSL2 QoS enhancement. For VDSL2 broadband access networks, multi-user optimisation techniques have been developed, so as to improve the basic data rate performance. Spectrum balancing improves the network performance by optimising users transmit power spectra as the resource allocation, to mitigate the impact from the crosstalk. Aiming at enhancing the performance for the upstream VDSL2 service, where the users QoS demand is not known by all other users, a set of autonomous spectrum balancing algorithms is proposed. These optimise users transmit power spectra locally with only direct channel state information. To prevent selfish behaviour, the concept of a virtual user is introduced to represent the impact on both crosstalk interference and queueing status of other users. Moreover, novel algorithms are developed to determine the parameters and the weight of the virtual user. Another type of resource allocation in the VDSL2 network is crosstalk cancellation by centralised signal coordination. The history of the data queue is considered as a time series, on which different smooth filter characteristics are investigated in order to investigate further performance improvement. The use of filter techniques accounts for both the instantaneous queue length and also the previous data to determine the most efficient dynamic resource allocation. With the help of this smoothed dynamic resource allocation, the network will benefit from both reduced signalling communication and improved delay performance.The proposed algorithms are verified by numerical experiments

    Game theoretic aspects of distributed spectral coordination with application to DSL networks

    Full text link
    In this paper we use game theoretic techniques to study the value of cooperation in distributed spectrum management problems. We show that the celebrated iterative water-filling algorithm is subject to the prisoner's dilemma and therefore can lead to severe degradation of the achievable rate region in an interference channel environment. We also provide thorough analysis of a simple two bands near-far situation where we are able to provide closed form tight bounds on the rate region of both fixed margin iterative water filling (FM-IWF) and dynamic frequency division multiplexing (DFDM) methods. This is the only case where such analytic expressions are known and all previous studies included only simulated results of the rate region. We then propose an alternative algorithm that alleviates some of the drawbacks of the IWF algorithm in near-far scenarios relevant to DSL access networks. We also provide experimental analysis based on measured DSL channels of both algorithms as well as the centralized optimum spectrum management

    MODELING THE NETWORK PERFORMANCE OF DSL CONNECTIONS USING NETEM

    Get PDF
    With the increased use of internet based applications requiring low latency, and high bandwidth, the performance demands of the last mile network continue to grow. Additionally, the highly variant deployment scenarios of these technologies, have a high impact on their performance, creating difficult to replicate environments for application developers to test in, often requiring expensive and difficult to obtain equipment. This thesis attempts to model the networking performance of DSL using the open source tool NetEm. This is done by studying the latency performance of DSL connections under a range of conditions and configurations, to quantify the performance. That performance data can then be used to create delay models for using NetEm’s custom distribution delay models. These models can provide a powerful tool to test devices and software under simulated DSL conditions

    Estimation and detection of transmission line characteristics in the copper access network

    Get PDF
    The copper access-network operators face the challenge of developing and maintaining cost-effective digital subscriber line (DSL) services that are competitive to other broadband access technologies. The way forward is dictated by the demand of ever increasing data rates on the twisted-pair copper lines. To meet this demand, a relocation of the DSL transceivers in cabinets closer to the customers are often necessary combined with a joint expansion of the accompanying optical-fiber backhaul network. The equipment of the next generation copper network are therefore becoming more scattered and geographically distributed, which increases the requirements of automated line qualification with fault detection and localization. This scenario is addressed in the first five papers of this dissertation where the focus is on estimation and detection of transmission line characteristics in the copper access network. The developed methods apply model-based optimization with an emphasis on using low-order modeling and a priori information of the given problem. More specifically, in Paper I a low-order and causal cable model is derived based on the Hilbert transform. This model is successfully applied in three contributions of this dissertation. In Paper II, a class of low-complexity unbiased estimators for the frequency-dependent characteristic impedance is presented that uses one-port measurements only. The so obtained characteristic impedance paves the way for enhanced time domain reflectometry (a.k.a. TDR) on twisted-pair lines. In Paper III, the problem of estimating a nonhomogeneous and dispersive transmission line is investigated and a space-frequency optimization approach is developed for the DSL application. The accompanying analysis shows which parameters are of interest to estimate and further suggests the introduction of the concept capacitive length that overcomes the necessity of a priori knowledge of the physical line length. In Paper IV, two methods are developed for detection and localization of load coils present in so-called loaded lines. In Paper V, line topology identification is addressed with varying degree of a priori information. In doing so, a model-based optimization approach is employed that utilizes multi-objective evolutionary computation based on one/two-port measurements. A complement to transceiver relocation that potentially enhances the total data throughput in the copper access network is dynamic spectrum management (DSM). This promising multi-user transmission technique aims at maximizing the transmission rates, and/or minimizing the power consumption, by mitigating or cancelling the dominating crosstalk interference between twisted-pair lines in the same cable binder. Hence the spectral utilization is improved by optimizing the transmit signals in order to minimize the crosstalk interference. However, such techniques rely on accurate information of the (usually) unknown crosstalk channels. This issue is the main focus of Paper VI and VII of this dissertation in which Paper VI deals with estimation of the crosstalk channels between twisted-pair lines. More specifically, an unbiased estimator for the square-magnitude of the crosstalk channels is derived from which a practical procedure is developed that can be implemented with standardized DSL modems already installed in the copper access network. In Paper VII the impact such a non-ideal estimator has on the performance of DSM is analyzed and simulated. Finally, in Paper VIII a novel echo cancellation algorithm for DMT-based DSL modems is presented

    Modeling of telecommunication cables for gigabit DSL application

    Get PDF
    The first part of our paper brings the description and analysis of method used for modeling of metallic cable’s parameters according to the modified KPN model. Moreover we were able to perform measurements and estimations for real metallic cable’s with various transmission characteristics and constructional arrangement, for which we derived the necessary parameters of a new modeling method. Following part contains the comparison of measured characteristics with their models according to the modified KPN model. Finally, we discussed obtained results
    corecore