4,988 research outputs found

    Towards Full Automated Drive in Urban Environments: A Demonstration in GoMentum Station, California

    Full text link
    Each year, millions of motor vehicle traffic accidents all over the world cause a large number of fatalities, injuries and significant material loss. Automated Driving (AD) has potential to drastically reduce such accidents. In this work, we focus on the technical challenges that arise from AD in urban environments. We present the overall architecture of an AD system and describe in detail the perception and planning modules. The AD system, built on a modified Acura RLX, was demonstrated in a course in GoMentum Station in California. We demonstrated autonomous handling of 4 scenarios: traffic lights, cross-traffic at intersections, construction zones and pedestrians. The AD vehicle displayed safe behavior and performed consistently in repeated demonstrations with slight variations in conditions. Overall, we completed 44 runs, encompassing 110km of automated driving with only 3 cases where the driver intervened the control of the vehicle, mostly due to error in GPS positioning. Our demonstration showed that robust and consistent behavior in urban scenarios is possible, yet more investigation is necessary for full scale roll-out on public roads.Comment: Accepted to Intelligent Vehicles Conference (IV 2017

    An Experimental Study on Pitch Compensation in Pedestrian-Protection Systems for Collision Avoidance and Mitigation

    Full text link
    This paper describes an improved stereovision system for the anticipated detection of car-to-pedestrian accidents. An improvement of the previous versions of the pedestrian-detection system is achieved by compensation of the camera's pitch angle, since it results in higher accuracy in the location of the ground plane and more accurate depth measurements. The system has been mounted on two different prototype cars, and several real collision-avoidance and collision-mitigation experiments have been carried out in private circuits using actors and dummies, which represents one of the main contributions of this paper. Collision avoidance is carried out by means of deceleration strategies whenever the accident is avoidable. Likewise, collision mitigation is accomplished by triggering an active hood system

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Safe Control of Manufacturing Vehicles Research Towards Standard Test Methods

    Get PDF
    The National Institute of Standards and Technology‟s Intelligent Systems Division has been researching several areas leading to safe control of manufacturing vehicles to improve automated guided vehicle (AGV) safety standards. The research areas include: AGV safety and control based on advanced two-dimensional (2D) sensors that detect moving standard test pieces representing humans; Ability of advanced 3D imaging sensors, when mounted to an AGV or forklift, to detect stationary or moving objects and test pieces on the ground or hanging over the work area; and Manned forklift safety based on advanced 3D imaging sensors that detect visible and non-visible regions for forklift operators. Experiments and results in the above areas are presented in this paper. The experimental results will be used to develop and recommend standard test methods, some of which are proposed in this paper, and to improve the standard stopping distance exception language and operator blind spot language in AGV standards
    corecore