7,375 research outputs found

    Exact and fixed-parameter algorithms for metro-line crossing minimization problems

    Full text link
    A metro-line crossing minimization problem is to draw multiple lines on an underlying graph that models stations and rail tracks so that the number of crossings of lines becomes minimum. It has several variations by adding restrictions on how lines are drawn. Among those, there is one with a restriction that line terminals have to be drawn at a verge of a station, and it is known to be NP-hard even when underlying graphs are paths. This paper studies the problem in this setting, and propose new exact algorithms. We first show that a problem to decide if lines can be drawn without crossings is solved in polynomial time, and propose a fast exponential algorithm to solve a crossing minimization problem. We then propose a fixed-parameter algorithm with respect to the multiplicity of lines, which implies that the problem is FPT.Comment: 19 pages, 15 figure

    Peacock Bundles: Bundle Coloring for Graphs with Globality-Locality Trade-off

    Full text link
    Bundling of graph edges (node-to-node connections) is a common technique to enhance visibility of overall trends in the edge structure of a large graph layout, and a large variety of bundling algorithms have been proposed. However, with strong bundling, it becomes hard to identify origins and destinations of individual edges. We propose a solution: we optimize edge coloring to differentiate bundled edges. We quantify strength of bundling in a flexible pairwise fashion between edges, and among bundled edges, we quantify how dissimilar their colors should be by dissimilarity of their origins and destinations. We solve the resulting nonlinear optimization, which is also interpretable as a novel dimensionality reduction task. In large graphs the necessary compromise is whether to differentiate colors sharply between locally occurring strongly bundled edges ("local bundles"), or also between the weakly bundled edges occurring globally over the graph ("global bundles"); we allow a user-set global-local tradeoff. We call the technique "peacock bundles". Experiments show the coloring clearly enhances comprehensibility of graph layouts with edge bundling.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Edge Routing with Ordered Bundles

    Full text link
    Edge bundling reduces the visual clutter in a drawing of a graph by uniting the edges into bundles. We propose a method of edge bundling drawing each edge of a bundle separately as in metro-maps and call our method ordered bundles. To produce aesthetically looking edge routes it minimizes a cost function on the edges. The cost function depends on the ink, required to draw the edges, the edge lengths, widths and separations. The cost also penalizes for too many edges passing through narrow channels by using the constrained Delaunay triangulation. The method avoids unnecessary edge-node and edge-edge crossings. To draw edges with the minimal number of crossings and separately within the same bundle we develop an efficient algorithm solving a variant of the metro-line crossing minimization problem. In general, the method creates clear and smooth edge routes giving an overview of the global graph structure, while still drawing each edge separately and thus enabling local analysis

    visone - Software for the Analysis and Visualization of Social Networks

    Get PDF
    We present the software tool visone which combines graph-theoretic methods for the analysis of social networks with tailored means of visualization. Our main contribution is the design of novel graph-layout algorithms which accurately reflect computed analyses results in well-arranged drawings of the networks under consideration. Besides this, we give a detailed description of the design of the software tool and the provided analysis methods

    LHC Interaction region upgrade

    Get PDF
    The thesis analyzes the interaction region of the Large Hadron Collider (LHC). It proposes, studies and compares several upgrade options. The interaction region is the part of the LHC that hosts the particle detectors which analyze the collisions. An upgrade of the interaction region can po- tentially increase the number of collision events and therefore it is possible to accumulate and study a larger set of experimental data. The main object of study are the focus systems that consist of a set of magnets in charge of concentrating the particle beams in a small spot at the interaction points. The thesis uses the methods of beam optics and beam dynamics to design new interaction regions. Two design schemes are compared with a detailed analysis of the performance of several implementations. The design of the layouts takes into account the technical limitations that will affect possible realizations. Either analytical or numerical methods are used to evaluate the perfor- mance of the proposed layouts. The thesis presents new general methods that can be used for problems beyond the scope of the thesis. An analytical method has been developed for finding the intrinsic limitations of the focus systems. It allows to perform an exhaustive scan of the accessible parameter space and thus presents an efficient tool for guiding the design process. A numerical optimization routine and several enhancements have been imple- mented in MADX, a code for beam optics design. The routines simplify the solution of several optimization problems of beam optics. Keywords: accelerators design, beam optics, beam dynamics

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Minimizing Crossings in Constrained Two-Sided Circular Graph Layouts

    Get PDF
    Circular layouts are a popular graph drawing style, where vertices are placed on a circle and edges are drawn as straight chords. Crossing minimization in circular layouts is NP-hard. One way to allow for fewer crossings in practice are two-sided layouts that draw some edges as curves in the exterior of the circle. In fact, one- and two-sided circular layouts are equivalent to one-page and two-page book drawings, i.e., graph layouts with all vertices placed on a line (the spine) and edges drawn in one or two distinct half-planes (the pages) bounded by the spine. In this paper we study the problem of minimizing the crossings for a fixed cyclic vertex order by computing an optimal k-plane set of exteriorly drawn edges for k >= 1, extending the previously studied case k=0. We show that this relates to finding bounded-degree maximum-weight induced subgraphs of circle graphs, which is a graph-theoretic problem of independent interest. We show NP-hardness for arbitrary k, present an efficient algorithm for k=1, and generalize it to an explicit XP-time algorithm for any fixed k. For the practically interesting case k=1 we implemented our algorithm and present experimental results that confirm the applicability of our algorithm

    A Coloring Algorithm for Disambiguating Graph and Map Drawings

    Full text link
    Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements. In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to a space decomposition of the color gamut. We give examples demonstrating the effectiveness of this approach in clarifying drawings of real world graphs and maps
    corecore