657 research outputs found

    Closed Loop solar array-ion thruster system with power control circuitry

    Get PDF
    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power

    Many-to-One Boundary Labeling with Backbones

    Full text link
    In this paper we study \emph{many-to-one boundary labeling with backbone leaders}. In this new many-to-one model, a horizontal backbone reaches out of each label into the feature-enclosing rectangle. Feature points that need to be connected to this label are linked via vertical line segments to the backbone. We present dynamic programming algorithms for label number and total leader length minimization of crossing-free backbone labelings. When crossings are allowed, we aim to obtain solutions with the minimum number of crossings. This can be achieved efficiently in the case of fixed label order, however, in the case of flexible label order we show that minimizing the number of leader crossings is NP-hard.Comment: 23 pages, 10 figures, this is the full version of a paper that is about to appear in GD'1

    Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes

    Get PDF
    When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field EE, which produces tidal forces, and the frame-drag field BB, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of EE) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of EE and BB on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon's intrinsic scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature. We show that, for horizon-penetrating time slices, all these entities (EE, BB, the tendex lines and vortex lines, the lines' tendicities and vorticities, and the horizon tendicities and vorticities) are affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing and coordinate choices that are commonly used for black holes. [Abstract is abbreviated.]Comment: 19 pages, 7 figures, v2: Changed to reflect published version (changes made to color scales in Figs 5, 6, and 7 for consistent conventions). v3: Fixed Ref

    Planar L-Drawings of Bimodal Graphs

    Full text link
    In a planar L-drawing of a directed graph (digraph) each edge e is represented as a polyline composed of a vertical segment starting at the tail of e and a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Our main focus is on bimodal graphs, i.e., digraphs admitting a planar embedding in which the incoming and outgoing edges around each vertex are contiguous. We show that every plane bimodal graph without 2-cycles admits a planar L-drawing. This includes the class of upward-plane graphs. Finally, outerplanar digraphs admit a planar L-drawing - although they do not always have a bimodal embedding - but not necessarily with an outerplanar embedding.Comment: Appears in the Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD 2020

    Embedding Graphs under Centrality Constraints for Network Visualization

    Full text link
    Visual rendering of graphs is a key task in the mapping of complex network data. Although most graph drawing algorithms emphasize aesthetic appeal, certain applications such as travel-time maps place more importance on visualization of structural network properties. The present paper advocates two graph embedding approaches with centrality considerations to comply with node hierarchy. The problem is formulated first as one of constrained multi-dimensional scaling (MDS), and it is solved via block coordinate descent iterations with successive approximations and guaranteed convergence to a KKT point. In addition, a regularization term enforcing graph smoothness is incorporated with the goal of reducing edge crossings. A second approach leverages the locally-linear embedding (LLE) algorithm which assumes that the graph encodes data sampled from a low-dimensional manifold. Closed-form solutions to the resulting centrality-constrained optimization problems are determined yielding meaningful embeddings. Experimental results demonstrate the efficacy of both approaches, especially for visualizing large networks on the order of thousands of nodes.Comment: Submitted to IEEE Transactions on Visualization and Computer Graphic
    corecore