43 research outputs found

    Collaborative Environment for Grid-based Flood Prediction

    Get PDF
    This paper presents the design, architecture and main implementation features of the flood prediction application of the Task 1.2 of the EU IST CROSSGRID. The paper begins with the description of the virtual organization of hydrometeorological experts, users, data providers and customers supported by the application. Then the architecture of the application is described, followed by used simulation models and modules of the collaborative environment. The paper ends with vision of future development of the application

    Effective Computation Resilience in High Performance and Distributed Environments

    Get PDF
    The work described in this paper aims at effective computation resilience for complex simulations in high performance and distributed environments. Computation resilience is a complicated and delicate area; it deals with many types of simulation cores, many types of data on various input levels and also with many types of end-users, which have different requirements and expectations. Predictions about system and computation behaviors must be done based on deep knowledge about underlying infrastructures, and simulations' mathematical and realization backgrounds. Our conceptual framework is intended to allow independent collaborations between domain experts as end-users and providers of the computational power by taking on all of the deployment troubles arising within a given computing environment. The goal of our work is to provide a generalized approach for effective scalable usage of the computing power and to help domain-experts, so that they could concentrate more intensive on their domain solutions without the need of investing efforts in learning and adapting to the new IT backbone technologies

    Grid Enabled Geospatial Catalogue Web Service

    Get PDF
    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic~, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing

    Leveraging Interactivity and MPI for Environmental Applications

    Get PDF
    This paper describes two different approaches to exploiting interactivity and MPI support available in the Interactive European Grid project.The first application is an air pollution simulation using Lagrangian trajectory model to simulate the spread of pollutant particles released into the atmosphere. The performance of the sequential implementation of the application was not satisfactory, therefore a parallelization was planned. The MPI programming model was used because of some previous experience with it and its support in the grid infrastructure to be used. Then the interactivity enabling the user to receive visualizations of simulation steps and to exercise control over the application running in the grid was added. The user interface for interacting with the application was implemented as a plug-in into the Migrating Desktop user interface client platform. The other application is an interactive workflow management system, which is a modification of a previously developed system for management of applications composed of web and grid services. It allows users to manage more complex jobs, composed of several program executions, in an interactive and comfortable manner. The system uses the interactive channel of the project to forward commands from a GUI to the on-site workflow manager, and to control the job during execution. This tool is able to visualize the inner workflow of the application. User has complete in-execution control over the job, can see its partial results, and can even alter it while it is running. This allows not only to accommodate the job workflow to the data it produces, extend or shorten it, but also to interactively debug and tune the job

    Towards Distributed Petascale Computing

    Get PDF
    In this chapter we will argue that studying such multi-scale multi-science systems gives rise to inherently hybrid models containing many different algorithms best serviced by different types of computing environments (ranging from massively parallel computers, via large-scale special purpose machines to clusters of PC's) whose total integrated computing capacity can easily reach the PFlop/s scale. Such hybrid models, in combination with the by now inherently distributed nature of the data on which the models `feed' suggest a distributed computing model, where parts of the multi-scale multi-science model are executed on the most suitable computing environment, and/or where the computations are carried out close to the required data (i.e. bring the computations to the data instead of the other way around). We presents an estimate for the compute requirements to simulate the Galaxy as a typical example of a multi-scale multi-physics application, requiring distributed Petaflop/s computational power.Comment: To appear in D. Bader (Ed.) Petascale, Computing: Algorithms and Applications, Chapman & Hall / CRC Press, Taylor and Francis Grou

    Data Assimilation Technique For Flood Monitoring and Prediction

    Get PDF
    This paper focuses on the development of methods and cascade of models for flood monitoring and forecasting and its implementation in Grid environment. The processing of satellite data for flood extent mapping is done using neural networks. For flood forecasting we use cascade of models: regional numerical weather prediction (NWP) model, hydrological model and hydraulic model. Implementation of developed methods and models in the Grid infrastructure and related projects are discussed

    Software Provision Process for EGI

    Get PDF
    he European Grid Initiative (EGI) provides a sustainable pan-European Grid computing infrastructure for e-Science based on a network of regional and national Grids. The middleware driving this production infrastructure is constantly adapted to the changing needs of the EGI Community by deploying new features and phasing out other features and components that are no longer needed. Unlike previous e-Infrastructure projects, EGI does not develop its own middleware solution, but instead sources the required components from Technology Providers and integrates them in the Unified Middleware Distribution (UMD). In order to guarantee a high quality and reliable operation of the infrastructure, all UMD software must undergo a release process that covers the definition of the functional, performance and quality requirements, the verification of those requirements and testing in production environments

    04451 Abstracts Collection -- Future Generation Grids

    Get PDF
    The Dagstuhl Seminar 04451 "Future Generation Grid" was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl from 1st to 5th November 2004. The focus of the seminar was on open problems and future challenges in the design of next generation Grid systems. A total of 45 participants presented their current projects, research plans, and new ideas in the area of Grid technologies. Several evening sessions with vivid discussions on future trends complemented the talks. This report gives an overview of the background and the findings of the seminar

    An ActOn-based Semantic Information Service for EGEE

    Get PDF
    We describe a semantic information service that aggregates metadata from a large number of information sources of a large-scale Grid infrastructure. It uses an ontology-based information integration architecture (ActOn) suitable for the highly dynamic distributed information sources available in Grid systems, where information changes frequently and where the information of distributed sources has to be aggregated in order to solve complex queries. These two challenges are addressed by a Metadata Cache that works with an update-on-demand policy and by an information source selection module that selects the most suitable source at a given point in time. We have evaluated the quality of this information service, and compared it with other similar services from the EGEE production testbed, with promising results
    corecore