1,711 research outputs found

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Systematic Review of Experimental Paradigms and Deep Neural Networks for Electroencephalography-Based Cognitive Workload Detection

    Full text link
    This article summarizes a systematic review of the electroencephalography (EEG)-based cognitive workload (CWL) estimation. The focus of the article is twofold: identify the disparate experimental paradigms used for reliably eliciting discreet and quantifiable levels of cognitive load and the specific nature and representational structure of the commonly used input formulations in deep neural networks (DNNs) used for signal classification. The analysis revealed a number of studies using EEG signals in its native representation of a two-dimensional matrix for offline classification of CWL. However, only a few studies adopted an online or pseudo-online classification strategy for real-time CWL estimation. Further, only a couple of interpretable DNNs and a single generative model were employed for cognitive load detection till date during this review. More often than not, researchers were using DNNs as black-box type models. In conclusion, DNNs prove to be valuable tools for classifying EEG signals, primarily due to the substantial modeling power provided by the depth of their network architecture. It is further suggested that interpretable and explainable DNN models must be employed for cognitive workload estimation since existing methods are limited in the face of the non-stationary nature of the signal.Comment: 10 Pages, 4 figure

    Deep Learning in EEG: Advance of the Last Ten-Year Critical Period

    Get PDF
    Deep learning has achieved excellent performance in a wide range of domains, especially in speech recognition and computer vision. Relatively less work has been done for EEG, but there is still significant progress attained in the last decade. Due to the lack of a comprehensive and topic widely covered survey for deep learning in EEG, we attempt to summarize recent progress to provide an overview, as well as perspectives for future developments. We first briefly mention the artifacts removal for EEG signal and then introduce deep learning models that have been utilized in EEG processing and classification. Subsequently, the applications of deep learning in EEG are reviewed by categorizing them into groups such as brain-computer interface, disease detection, and emotion recognition. They are followed by the discussion, in which the pros and cons of deep learning are presented and future directions and challenges for deep learning in EEG are proposed. We hope that this paper could serve as a summary of past work for deep learning in EEG and the beginning of further developments and achievements of EEG studies based on deep learning

    Contributions to the study of Austism Spectrum Brain conectivity

    Get PDF
    164 p.Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this Thesis we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines

    Data Augmentation for Deep-Learning-Based Electroencephalography

    Get PDF
    Background: Data augmentation (DA) has recently been demonstrated to achieve considerable performance gains for deep learning (DL)—increased accuracy and stability and reduced overfitting. Some electroencephalography (EEG) tasks suffer from low samples-to-features ratio, severely reducing DL effectiveness. DA with DL thus holds transformative promise for EEG processing, possibly like DL revolutionized computer vision, etc. New method: We review trends and approaches to DA for DL in EEG to address: Which DA approaches exist and are common for which EEG tasks? What input features are used? And, what kind of accuracy gain can be expected? Results: DA for DL on EEG begun 5 years ago and is steadily used more. We grouped DA techniques (noise addition, generative adversarial networks, sliding windows, sampling, Fourier transform, recombination of segmentation, and others) and EEG tasks (into seizure detection, sleep stages, motor imagery, mental workload, emotion recognition, motor tasks, and visual tasks). DA efficacy across techniques varied considerably. Noise addition and sliding windows provided the highest accuracy boost; mental workload most benefitted from DA. Sliding window, noise addition, and sampling methods most common for seizure detection, mental workload, and sleep stages, respectively. Comparing with existing methods: Percent of decoding accuracy explained by DA beyond unaugmented accuracy varied between 8% for recombination of segmentation and 36% for noise addition and from 14% for motor imagery to 56% for mental workload—29% on average. Conclusions: DA increasingly used and considerably improved DL decoding accuracy on EEG. Additional publications—if adhering to our reporting guidelines—will facilitate more detailed analysis

    Data Augmentation for Deep-Learning-Based Electroencephalography

    Get PDF
    Background: Data augmentation (DA) has recently been demonstrated to achieve considerable performance gains for deep learning (DL)—increased accuracy and stability and reduced overfitting. Some electroencephalography (EEG) tasks suffer from low samples-to-features ratio, severely reducing DL effectiveness. DA with DL thus holds transformative promise for EEG processing, possibly like DL revolutionized computer vision, etc. New method: We review trends and approaches to DA for DL in EEG to address: Which DA approaches exist and are common for which EEG tasks? What input features are used? And, what kind of accuracy gain can be expected? Results: DA for DL on EEG begun 5 years ago and is steadily used more. We grouped DA techniques (noise addition, generative adversarial networks, sliding windows, sampling, Fourier transform, recombination of segmentation, and others) and EEG tasks (into seizure detection, sleep stages, motor imagery, mental workload, emotion recognition, motor tasks, and visual tasks). DA efficacy across techniques varied considerably. Noise addition and sliding windows provided the highest accuracy boost; mental workload most benefitted from DA. Sliding window, noise addition, and sampling methods most common for seizure detection, mental workload, and sleep stages, respectively. Comparing with existing methods: Percent of decoding accuracy explained by DA beyond unaugmented accuracy varied between 8% for recombination of segmentation and 36% for noise addition and from 14% for motor imagery to 56% for mental workload—29% on average. Conclusions: DA increasingly used and considerably improved DL decoding accuracy on EEG. Additional publications—if adhering to our reporting guidelines—will facilitate more detailed analysis

    Probabilistic models for structured sparsity

    Get PDF

    Cognitive training optimization with a closed-loop system

    Full text link
    Les interfaces cerveau-machine (ICMs) nous offrent un moyen de fermer la boucle entre notre cerveau et le monde de la technologie numérique. Cela ouvre la porte à une pléthore de nouvelles applications où nous utilisons directement le cerveau comme entrée. S’il est facile de voir le potentiel, il est moins facile de trouver la bonne application avec les bons corrélats neuronaux pour construire un tel système en boucle fermée. Ici, nous explorons une tâche de suivi d’objets multiples en 3D, dans un contexte d’entraînement cognitif (3D-MOT). Notre capacité à suivre plusieurs objets dans un environnement dynamique nous permet d’effectuer des tâches quotidiennes telles que conduire, pratiquer des sports d’équipe et marcher dans un centre commercial achalandé. Malgré plus de trois décennies de littérature sur les tâches MOT, les mécanismes neuronaux sous- jacents restent mal compris. Ici, nous avons examiné les corrélats neuronaux via l’électroencéphalographie (EEG) et leurs changements au cours des trois phases d’une tâche de 3D-MOT, à savoir l’identification, le suivi et le rappel. Nous avons observé ce qui semble être un transfert entre l’attention et la de mémoire de travail lors du passage entre le suivi et le rappel. Nos résultats ont révélé une forte inhibition des fréquences delta et thêta de la région frontale lors du suivi, suivie d’une forte (ré)activation de ces mêmes fréquences lors du rappel. Nos résultats ont également montré une activité de retard contralatérale (CDA en anglais), une activité négative soutenue dans l’hémisphère contralatérale aux positions des éléments visuels à suivre. Afin de déterminer si le CDA est un corrélat neuronal robuste pour les tâches de mémoire de travail visuelle, nous avons reproduit huit études liées au CDA avec un ensemble de données EEG accessible au public. Nous avons utilisé les données EEG brutes de ces huit études et les avons analysées avec le même pipeline de base pour extraire le CDA. Nous avons pu reproduire les résultats de chaque étude et montrer qu’avec un pipeline automatisé de base, nous pouvons extraire le CDA. Récemment, l’apprentissage profond (deep learning / DL en anglais) s’est révélé très prometteur pour aider à donner un sens aux signaux EEG en raison de sa capacité à apprendre de bonnes représentations à partir des données brutes. La question à savoir si l’apprentissage profond présente vraiment un avantage par rapport aux approches plus traditionnelles reste une question ouverte. Afin de répondre à cette question, nous avons examiné 154 articles appliquant le DL à l’EEG, publiés entre janvier 2010 et juillet 2018, et couvrant différents domaines d’application tels que l’épilepsie, le sommeil, les interfaces cerveau-machine et la surveillance cognitive et affective. Enfin, nous explorons la possibilité de fermer la boucle et de créer un ICM passif avec une tâche 3D-MOT. Nous classifions l’activité EEG pour prédire si une telle activité se produit pendant la phase de suivi ou de rappel de la tâche 3D-MOT. Nous avons également formé un classificateur pour les essais latéralisés afin de prédire si les cibles étaient présentées dans l’hémichamp gauche ou droit en utilisant l’activité EEG. Pour la classification de phase entre le suivi et le rappel, nous avons obtenu un 80% lors de l’entraînement d’un SVM sur plusieurs sujets en utilisant la puissance des bandes de fréquences thêta et delta des électrodes frontales.Brain-computer interfaces (BCIs) offer us a way to close the loop between our brain and the digital world of technology. It opens the door for a plethora of new applications where we use the brain directly as an input. While it is easy to see the disruptive potential, it is less so easy to find the right application with the right neural correlates to build such closed-loop system. Here we explore closing the loop during a cognitive training 3D multiple object tracking task (3D-MOT). Our ability to track multiple objects in a dynamic environment enables us to perform everyday tasks such as driving, playing team sports, and walking in a crowded mall. Despite more than three decades of literature on MOT tasks, the underlying and intertwined neural mechanisms remain poorly understood. Here we looked at the electroencephalography (EEG) neural correlates and their changes across the three phases of a 3D-MOT task, namely identification, tracking and recall. We observed what seems to be a handoff between focused attention and working memory processes when going from tracking to recall. Our findings revealed a strong inhibition in delta and theta frequencies from the frontal region during tracking, followed by a strong (re)activation of these same frequencies during recall. Our results also showed contralateral delay activity (CDA), a sustained negativity over the hemisphere contralateral to the positions of visual items to be remembered. In order to investigate if the CDA is a robust neural correlate for visual working memory (VWM) tasks, we reproduced eight CDA-related studies with a publicly accessible EEG dataset. We used the raw EEG data from these eight studies and analysed all of them with the same basic pipeline to extract CDA. We were able to reproduce the results from all the studies and show that with a basic automated EEG pipeline we can extract a clear CDA signal. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. In order to address such question, we reviewed 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. Finally, we explore the potential for closing the loop and creating a passive BCI with a 3D-MOT task. We classify EEG activity to predict if such activity is happening during the tracking or the recall phase of the 3D-MOT task. We also trained a classifier for lateralized trials to predict if the targets were presented on the left or right hemifield using EEG brain activity. For the phase classification between tracking and recall, we obtained 80% accuracy when training a SVM across subjects using the theta and delta frequency band power from the frontal electrodes and 83% accuracy when training within subjects
    • …
    corecore