960 research outputs found

    Analysing the Security of Google's implementation of OpenID Connect

    Get PDF
    Many millions of users routinely use their Google accounts to log in to relying party (RP) websites supporting the Google OpenID Connect service. OpenID Connect, a newly standardised single-sign-on protocol, builds an identity layer on top of the OAuth 2.0 protocol, which has itself been widely adopted to support identity management services. It adds identity management functionality to the OAuth 2.0 system and allows an RP to obtain assurances regarding the authenticity of an end user. A number of authors have analysed the security of the OAuth 2.0 protocol, but whether OpenID Connect is secure in practice remains an open question. We report on a large-scale practical study of Google's implementation of OpenID Connect, involving forensic examination of 103 RP websites which support its use for sign-in. Our study reveals serious vulnerabilities of a number of types, all of which allow an attacker to log in to an RP website as a victim user. Further examination suggests that these vulnerabilities are caused by a combination of Google's design of its OpenID Connect service and RP developers making design decisions which sacrifice security for simplicity of implementation. We also give practical recommendations for both RPs and OPs to help improve the security of real world OpenID Connect systems

    The Transitivity of Trust Problem in the Interaction of Android Applications

    Full text link
    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explored in the future

    Web access monitoring mechanism via Android WebView for threat analysis

    Get PDF
    Many Android apps employ WebView, a component that enables the display of web content in the apps without redirecting users to web browser apps. However, WebView might also be used for cyberattacks. Moreover, to the best of our knowledge, although some countermeasures based on access control have been reported for attacks exploiting WebView, no mechanism for monitoring web access via WebView has been proposed and no analysis results focusing on web access via WebView are available. In consideration of this limitation, we propose a web access monitoring mechanism for Android WebView to analyze web access via WebView and clarify attacks exploiting WebView. In this paper, we present the design and implementation of this mechanism by modifying Chromium WebView without any modifications to the Android framework or Linux kernel. The evaluation results of the performance achieved on introducing the proposed mechanism are also presented here. Moreover, the result of threat analysis of displaying a fake virus alert while browsing websites on Android is discussed to demonstrate the effectiveness of the proposed mechanism

    Code Injection Attacks on HTML5-based Mobile Apps

    Full text link
    HTML5-based mobile apps become more and more popular, mostly because they are much easier to be ported across different mobile platforms than native apps. HTML5-based apps are implemented using the standard web technologies, including HTML5, JavaScript and CSS; they depend on some middlewares, such as PhoneGap, to interact with the underlying OS. Knowing that JavaScript is subject to code injection attacks, we have conducted a systematic study on HTML5-based mobile apps, trying to evaluate whether it is safe to rely on the web technologies for mobile app development. Our discoveries are quite surprising. We found out that if HTML5-based mobile apps become popular--it seems to go that direction based on the current projection--many of the things that we normally do today may become dangerous, including reading from 2D barcodes, scanning Wi-Fi access points, playing MP4 videos, pairing with Bluetooth devices, etc. This paper describes how HTML5-based apps can become vulnerable, how attackers can exploit their vulnerabilities through a variety of channels, and what damage can be achieved by the attackers. In addition to demonstrating the attacks through example apps, we have studied 186 PhoneGap plugins, used by apps to achieve a variety of functionalities, and we found that 11 are vulnerable. We also found two real HTML5-based apps that are vulnerable to the attacks.Comment: In Proceedings of the Third Workshop on Mobile Security Technologies (MoST) 2014 (http://arxiv.org/abs/1410.6674

    A Framework for Hybrid Intrusion Detection Systems

    Get PDF
    Web application security is a definite threat to the world’s information technology infrastructure. The Open Web Application Security Project (OWASP), generally defines web application security violations as unauthorized or unintentional exposure, disclosure, or loss of personal information. These breaches occur without the company’s knowledge and it often takes a while before the web application attack is revealed to the public, specifically because the security violations are fixed. Due to the need to protect their reputation, organizations have begun researching solutions to these problems. The most widely accepted solution is the use of an Intrusion Detection System (IDS). Such systems currently rely on either signatures of the attack used for the data breach or changes in the behavior patterns of the system to identify an intruder. These systems, either signature-based or anomaly-based, are readily understood by attackers. Issues arise when attacks are not noticed by an existing IDS because the attack does not fit the pre-defined attack signatures the IDS is implemented to discover. Despite current IDSs capabilities, little research has identified a method to detect all potential attacks on a system. This thesis intends to address this problem. A particular emphasis will be placed on detecting advanced attacks, such as those that take place at the application layer. These types of attacks are able to bypass existing IDSs, increase the potential for a web application security breach to occur and not be detected. In particular, the attacks under study are all web application layer attacks. Those included in this thesis are SQL injection, cross-site scripting, directory traversal and remote file inclusion. This work identifies common and existing data breach detection methods as well as the necessary improvements for IDS models. Ultimately, the proposed approach combines an anomaly detection technique measured by cross entropy and a signature-based attack detection framework utilizing genetic algorithm. The proposed hybrid model for data breach detection benefits organizations by increasing security measures and allowing attacks to be identified in less time and more efficiently

    Mobile application for event updates

    Get PDF
    Master of ScienceComputing and Information SciencesMitchell L. NeilsenIt is really tough for someone new to a place to search for new addresses or navigate from one building to another. Further, it would help the user to keep track of event at each building/location in the app itself rather than noting them down on a piece of paper. Keeping these in mind, the idea is to develop a mobile app through which one can easily search for addresses/buildings which might not be available in google maps and also should be getting updates regarding the events at that location. This can be achieved by storing the latitudes and longitudes of each building or any specific location through the website which in turn is updated in the mobile application. The user can further check the events at each building which will be updated from the website. The application is divided into two parts, user module and admin module. The user would be using a mobile app to perform the required operations while the admin is responsible for storing the locations and events. Since there are a huge percentage of both android, iOS and windows users these days, it would be beneficial to build a hybrid app which would work cross platform rather than building a native app. I would be using the native browsers of these operating systems to achieve this. The admin module is a website through which locations and events at specified locations can be stored based on dates in an attached relational database. This module can only be accessed by authorized users and is responsible for all the updates visible for the mobile app user. The completely developed app can be used by any organization or institution to be used by their staff/students, etc

    ATTACKS AND COUNTERMEASURES FOR WEBVIEW ON MOBILE SYSTEMS

    Get PDF
    ABSTRACT All the mainstream mobile operating systems provide a web container, called ``WebView\u27\u27. This Web-based interface can be included as part of the mobile application to retrieve and display web contents from remote servers. WebView not only provides the same functionalities as web browser, more importantly, it enables rich interactions between mobile apps and webpages loaded inside WebView. Through its APIs, WebView enables the two-way interaction. However, the design of WebView changes the landscape of the Web, especially from the security perspective. This dissertation conducts a comprehensive and systematic study of WebView\u27s impact on web security, with a particular focus on identifying its fundamental causes. This dissertation discovers multiple attacks on WebView, and proposes new protection models to enhance the security of WebView. The design principles of these models are also described as well as the prototype implementation in Android platform. Evaluations are used to demonstrate the effectiveness and performance of these protection models
    • …
    corecore