8,989 research outputs found

    Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch

    Get PDF
    In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets.Comment: Accepted at ICPR 201

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval

    Full text link
    Free-hand sketch-based image retrieval (SBIR) is a specific cross-view retrieval task, in which queries are abstract and ambiguous sketches while the retrieval database is formed with natural images. Work in this area mainly focuses on extracting representative and shared features for sketches and natural images. However, these can neither cope well with the geometric distortion between sketches and images nor be feasible for large-scale SBIR due to the heavy continuous-valued distance computation. In this paper, we speed up SBIR by introducing a novel binary coding method, named \textbf{Deep Sketch Hashing} (DSH), where a semi-heterogeneous deep architecture is proposed and incorporated into an end-to-end binary coding framework. Specifically, three convolutional neural networks are utilized to encode free-hand sketches, natural images and, especially, the auxiliary sketch-tokens which are adopted as bridges to mitigate the sketch-image geometric distortion. The learned DSH codes can effectively capture the cross-view similarities as well as the intrinsic semantic correlations between different categories. To the best of our knowledge, DSH is the first hashing work specifically designed for category-level SBIR with an end-to-end deep architecture. The proposed DSH is comprehensively evaluated on two large-scale datasets of TU-Berlin Extension and Sketchy, and the experiments consistently show DSH's superior SBIR accuracies over several state-of-the-art methods, while achieving significantly reduced retrieval time and memory footprint.Comment: This paper will appear as a spotlight paper in CVPR201
    • …
    corecore