10,606 research outputs found

    Fine-graind Image Classification via Combining Vision and Language

    Full text link
    Fine-grained image classification is a challenging task due to the large intra-class variance and small inter-class variance, aiming at recognizing hundreds of sub-categories belonging to the same basic-level category. Most existing fine-grained image classification methods generally learn part detection models to obtain the semantic parts for better classification accuracy. Despite achieving promising results, these methods mainly have two limitations: (1) not all the parts which obtained through the part detection models are beneficial and indispensable for classification, and (2) fine-grained image classification requires more detailed visual descriptions which could not be provided by the part locations or attribute annotations. For addressing the above two limitations, this paper proposes the two-stream model combining vision and language (CVL) for learning latent semantic representations. The vision stream learns deep representations from the original visual information via deep convolutional neural network. The language stream utilizes the natural language descriptions which could point out the discriminative parts or characteristics for each image, and provides a flexible and compact way of encoding the salient visual aspects for distinguishing sub-categories. Since the two streams are complementary, combining the two streams can further achieves better classification accuracy. Comparing with 12 state-of-the-art methods on the widely used CUB-200-2011 dataset for fine-grained image classification, the experimental results demonstrate our CVL approach achieves the best performance.Comment: 9 pages, to appear in CVPR 201

    Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition

    Get PDF
    Aerial scene recognition is a fundamental task in remote sensing and has recently received increased interest. While the visual information from overhead images with powerful models and efficient algorithms yields considerable performance on scene recognition, it still suffers from the variation of ground objects, lighting conditions etc. Inspired by the multi-channel perception theory in cognition science, in this paper, for improving the performance on the aerial scene recognition, we explore a novel audiovisual aerial scene recognition task using both images and sounds as input. Based on an observation that some specific sound events are more likely to be heard at a given geographic location, we propose to exploit the knowledge from the sound events to improve the performance on the aerial scene recognition. For this purpose, we have constructed a new dataset named AuDio Visual Aerial sceNe reCognition datasEt (ADVANCE). With the help of this dataset, we evaluate three proposed approaches for transferring the sound event knowledge to the aerial scene recognition task in a multimodal learning framework, and show the benefit of exploiting the audio information for the aerial scene recognition. The source code is publicly available for reproducibility purposes.Comment: ECCV 202

    Self-Supervised Vision-Based Detection of the Active Speaker as Support for Socially-Aware Language Acquisition

    Full text link
    This paper presents a self-supervised method for visual detection of the active speaker in a multi-person spoken interaction scenario. Active speaker detection is a fundamental prerequisite for any artificial cognitive system attempting to acquire language in social settings. The proposed method is intended to complement the acoustic detection of the active speaker, thus improving the system robustness in noisy conditions. The method can detect an arbitrary number of possibly overlapping active speakers based exclusively on visual information about their face. Furthermore, the method does not rely on external annotations, thus complying with cognitive development. Instead, the method uses information from the auditory modality to support learning in the visual domain. This paper reports an extensive evaluation of the proposed method using a large multi-person face-to-face interaction dataset. The results show good performance in a speaker dependent setting. However, in a speaker independent setting the proposed method yields a significantly lower performance. We believe that the proposed method represents an essential component of any artificial cognitive system or robotic platform engaging in social interactions.Comment: 10 pages, IEEE Transactions on Cognitive and Developmental System
    • …
    corecore