854 research outputs found

    Zero-Shot Sketch-Image Hashing

    Get PDF
    Recent studies show that large-scale sketch-based image retrieval (SBIR) can be efficiently tackled by cross-modal binary representation learning methods, where Hamming distance matching significantly speeds up the process of similarity search. Providing training and test data subjected to a fixed set of pre-defined categories, the cutting-edge SBIR and cross-modal hashing works obtain acceptable retrieval performance. However, most of the existing methods fail when the categories of query sketches have never been seen during training. In this paper, the above problem is briefed as a novel but realistic zero-shot SBIR hashing task. We elaborate the challenges of this special task and accordingly propose a zero-shot sketch-image hashing (ZSIH) model. An end-to-end three-network architecture is built, two of which are treated as the binary encoders. The third network mitigates the sketch-image heterogeneity and enhances the semantic relations among data by utilizing the Kronecker fusion layer and graph convolution, respectively. As an important part of ZSIH, we formulate a generative hashing scheme in reconstructing semantic knowledge representations for zero-shot retrieval. To the best of our knowledge, ZSIH is the first zero-shot hashing work suitable for SBIR and cross-modal search. Comprehensive experiments are conducted on two extended datasets, i.e., Sketchy and TU-Berlin with a novel zero-shot train-test split. The proposed model remarkably outperforms related works.Comment: Accepted as spotlight at CVPR 201

    Deep Binary Representation Learning for Single/Cross-Modal Data Retrieval

    Get PDF
    Data similarity search is widely regarded as a classic topic in the realms of computer vision, machine learning and data mining. Providing a certain query, the retrieval model sorts out the related candidates in the database according to their similarities, where representation learning methods and nearest-neighbour search apply. As matching data features in Hamming space is computationally cheaper than in Euclidean space, learning to hash and binary representations are generally appreciated in modern retrieval models. Recent research seeks solutions in deep learning to formulate the hash functions, showing great potential in retrieval performance. In this thesis, we gradually extend our research topics and contributions from unsupervised single-modal deep hashing to supervised cross-modal hashing _nally zero-shot hashing problems, addressing the following challenges in deep hashing. First of all, existing unsupervised deep hashing works are still not attaining leading retrieval performance compared with the shallow ones. To improve this, a novel unsupervised single-modal hashing model is proposed in this thesis, named Deep Variational Binaries (DVB). We introduce the popular conditional variational auto-encoders to formulate the encoding function. By minimizing the reconstruction error of the latent variables, the proposed model produces compact binary codes without training supervision. Experiments on benchmarked datasets show that our model outperform existing unsupervised hashing methods. The second problem is that current cross-modal hashing methods only consider holistic image representations and fail to model descriptive sentences, which is inappropriate to handle the rich semantics of informative cross-modal data for quality textual-visual search tasks. To handle this problem, we propose a supervised deep cross-modal hashing model called Textual-Visual Deep Binaries (TVDB). Region-based neural networks and recurrent neural networks are involved in the image encoding network in order to make e_ective use of visual information, while the text encoder is built using a convolutional neural network. We additionally introduce an e_cient in-batch optimization routine to train the network parameters. The proposed mode successfully outperforms state-of-the-art methods on large-scale datasets. Finally, existing hashing models fail when the categories of query data have never been seen during training. This scenario is further extended into a novel zero-shot cross-modal hashing task in this thesis, and a Zero-shot Sketch-Image Hashing (ZSIH) scheme is then proposed with graph convolution and stochastic neurons. Experiments show that the proposed ZSIH model signi_cantly outperforms existing hashing algorithms in the zero-shot retrieval task. Experiments suggest our proposed and novel hashing methods outperform state-of-the-art researches in single-modal and cross-modal data retrieval

    Attribute-Guided Network for Cross-Modal Zero-Shot Hashing

    Get PDF
    Zero-shot hashing (ZSH) aims at learning a hashing model that is trained only by instances from seen categories but can generate well to those of unseen categories. Typically, it is achieved by utilizing a semantic embedding space to transfer knowledge from seen domain to unseen domain. Existing efforts mainly focus on single-modal retrieval task, especially image-based image retrieval (IBIR). However, as a highlighted research topic in the field of hashing, cross-modal retrieval is more common in real-world applications. To address the cross-modal ZSH (CMZSH) retrieval task, we propose a novel attribute-guided network (AgNet), which can perform not only IBIR but also text-based image retrieval (TBIR). In particular, AgNet aligns different modal data into a semantically rich attribute space, which bridges the gap caused by modality heterogeneity and zero-shot setting. We also design an effective strategy that exploits the attribute to guide the generation of hash codes for image and text within the same network. Extensive experimental results on three benchmark data sets (AwA, SUN, and ImageNet) demonstrate the superiority of AgNet on both cross-modal and single-modal zero-shot image retrieval tasks

    Zero-Shot Hashing via Transferring Supervised Knowledge

    Full text link
    Hashing has shown its efficiency and effectiveness in facilitating large-scale multimedia applications. Supervised knowledge e.g. semantic labels or pair-wise relationship) associated to data is capable of significantly improving the quality of hash codes and hash functions. However, confronted with the rapid growth of newly-emerging concepts and multimedia data on the Web, existing supervised hashing approaches may easily suffer from the scarcity and validity of supervised information due to the expensive cost of manual labelling. In this paper, we propose a novel hashing scheme, termed \emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories to binary codes with hash functions learned from limited training data of "seen" categories. Specifically, we project independent data labels i.e. 0/1-form label vectors) into semantic embedding space, where semantic relationships among all the labels can be precisely characterized and thus seen supervised knowledge can be transferred to unseen classes. Moreover, in order to cope with the semantic shift problem, we rotate the embedded space to more suitably align the embedded semantics with the low-level visual feature space, thereby alleviating the influence of semantic gap. In the meantime, to exert positive effects on learning high-quality hash functions, we further propose to preserve local structural property and discrete nature in binary codes. Besides, we develop an efficient alternating algorithm to solve the ZSH model. Extensive experiments conducted on various real-life datasets show the superior zero-shot image retrieval performance of ZSH as compared to several state-of-the-art hashing methods.Comment: 11 page

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author
    corecore