1,222 research outputs found

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Autonomous optimization of UWB link access

    Get PDF
    We present a novel approach for interference management in low data rate IR-UWB networks that enables concurrent transmissions at full power while allows each source to independently adapt its pulse rate (transmitted pulses per second) to mitigate multi-user interference. The work is motivated by the fact that the distributed adaptation of IR-UWB pulse rate has not been sufficiently addressed in the literature before. Existing approaches rely on the presence of a central authority or assume a definite receiver technique. Our approach enables users to share the communication medium in an efficient way compatible with individual QoS requirements and it is independent of any particular modulation scheme or receiver technique

    Cross-Layer Design for Smart Routing in Wireless Sensor Networks

    Get PDF

    Diseños de capa cruzada para redes inalåmbricas de årea corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalåmbricas en redes de årea corporal (WBAN), donde el modelo clåsico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones mås relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Ademås, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications

    A Joint PHY/MAC Architecture for Low-Radiated Power TH-UWB Wireless Ad-Hoc Networks

    Get PDF
    Due to environmental concerns and strict constraints on interference imposed on other networks, the radiated power of emerging pervasive wireless networks needs to be strictly limited, yet without sacrificing acceptable data rates. Pulsed Time-Hopping Ultra-Wide Band (TH-UWB) is a radio technology that has the potential to satisfy this requirement. Although TH-UWB is a multi-user radio technology, non-zero cross-correlation between time-hopping sequences, time-asynchronicity between sources and a multipath channel environment make it sensitive to strong interferers and near-far scenarios. While most protocols manage interference and multiple-access through power control or mutual exclusion (CSMA/CA or TDMA), we base our design on rate control, a relatively unexplored dimension for multiple-access and interference management. We further take advantage of the nature of pulsed TH-UWB to propose an interference mitigation scheme that reduces the impact of strong interferers. A source is always allowed to send and continuously adapts its channel code (hence its rate) to the interference experienced at the destination. In contrast to power control or exclusion, our MAC layer is local to sender and receiver and does not need coordination among neighbors not involved in the transmission. We show by simulation that we achieve a significant increase in network throughput

    Energy-delay tradeoffs in impulse-based ultra-wideband body area networks with noncoherent receivers

    Full text link
    © 2014 IEEE. In this paper we address the problem of rate scheduling in the Impulse Radio (IR) ultra-wideband (UWB) wireless body area networks (WBANs) and the minimum energy required to stabilize the queuing system. Targeting low complexity WBAN applications, we assume noncoherent receivers based on energy detection and autocorrelation for all nodes. The coordinating node can minimize the average energy consumption of the system and achieve the queue backlog stability of the sensor nodes by controlling the number of pulses per symbol. We first illustrate the necessary and sufficient conditions of network stability for a multi-mode UWB system and then propose a feasible rate scheduling algorithm based on the Lyapunov optimization theory. The scheduling algorithm uses the instantaneous channel state information and the length of the local queue of all sensor nodes and can approach the optimal energy-delay tradeoff of the network. We apply our theoretical framework to the IR-UWB physical layer of the IEEE 802.15.6 standard and extract the optimal physical layer modes that can achieve the desired energy-delay tradeoff
    • 

    corecore