2,467 research outputs found

    Understanding Link Dynamics in Wireless Sensor Networks with Dynamically Steerable Directional Antennas

    Get PDF
    Abstract. By radiating the power in the direction of choice, electronicallyswitched directional (ESD) antennas can reduce network contention and avoid packet loss. There exists some ESD antennas for wireless sensor networks, but so far researchers have mainly evaluated their directionality. There are no studies regarding the link dynamics of ESD antennas, in particular not for indoor deployments and other scenarios where nodes are not necessarily in line of sight. Our long-term experiments confirm that previous findings that have demonstrated the dependence of angleof-arrival on channel frequency also hold for directional transmissions with ESD antennas. This is important for the design of protocols for wireless sensor networks with ESD antennas: the best antenna direction, i.e., the direction that leads to the highest packet reception rate and signal strength at the receiver, is not stable but varies over time and with the selected IEEE 802.15.4 channel. As this requires protocols to incorporate some form of adaptation, we present an intentionally simple and yet efficient mechanism for selecting the best antenna direction at run-time with an energy overhead below 2 % compared to standard omni-directional transmissions.

    Fast Cell Discovery in mm-wave 5G Networks with Context Information

    Full text link
    The exploitation of mm-wave bands is one of the key-enabler for 5G mobile radio networks. However, the introduction of mm-wave technologies in cellular networks is not straightforward due to harsh propagation conditions that limit the mm-wave access availability. Mm-wave technologies require high-gain antenna systems to compensate for high path loss and limited power. As a consequence, directional transmissions must be used for cell discovery and synchronization processes: this can lead to a non-negligible access delay caused by the exploration of the cell area with multiple transmissions along different directions. The integration of mm-wave technologies and conventional wireless access networks with the objective of speeding up the cell search process requires new 5G network architectural solutions. Such architectures introduce a functional split between C-plane and U-plane, thereby guaranteeing the availability of a reliable signaling channel through conventional wireless technologies that provides the opportunity to collect useful context information from the network edge. In this article, we leverage the context information related to user positions to improve the directional cell discovery process. We investigate fundamental trade-offs of this process and the effects of the context information accuracy on the overall system performance. We also cope with obstacle obstructions in the cell area and propose an approach based on a geo-located context database where information gathered over time is stored to guide future searches. Analytic models and numerical results are provided to validate proposed strategies.Comment: 14 pages, submitted to IEEE Transaction on Mobile Computin

    Millimeter Wave Ad Hoc Networks: Noise-limited or Interference-limited?

    Full text link
    In millimeter wave (mmWave) communication systems, narrow beam operations overcome severe channel attenuations, reduce multiuser interference, and thus introduce the new concept of noise-limited mmWave wireless networks. The regime of the network, whether noise-limited or interference-limited, heavily reflects on the medium access control (MAC) layer throughput and on proper resource allocation and interference management strategies. Yet, alternating presence of these regimes and, more importantly, their dependence on the mmWave design parameters are ignored in the current approaches to mmWave MAC layer design, with the potential disastrous consequences on the throughput/delay performance. In this paper, tractable closed-form expressions for collision probability and MAC layer throughput of mmWave networks, operating under slotted ALOHA and TDMA, are derived. The new analysis reveals that mmWave networks may exhibit a non-negligible transitional behavior from a noise-limited regime to an interference-limited regime, depending on the density of the transmitters, density and size of obstacles, transmission probability, beamwidth, and transmit power. It is concluded that a new framework of adaptive hybrid resource allocation procedure, containing a proactive contention-based phase followed by a reactive contention-free one with dynamic phase durations, is necessary to cope with such transitional behavior.Comment: accepted in IEEE GLOBECOM'1

    Electronically-switched Directional Antennas for Low-power Wireless Networks: A Prototype-driven Evaluation

    Get PDF
    We study the benefits of electronically-switched directional antennas in low-power wireless networks. This antenna technology may improve energy efficiency by increasing the communication range and by alleviating contention in directions other than the destination, but in principle requires a dedicated network stack. Unlike most existing works, we start by characterizing a real-world antenna prototype, and apply this to an existing low-power wireless stack, which we adapt with minimal changes. Our results show that: i) the combination of a low-cost directional antenna and a conventional network stack already brings significant performance improvements, e.g., nearly halving the radio-on time per delivered packet; ii) the margin of improvement available to alternative clean-slate protocol designs is similarly large and concentrated in the control rather than the data plane; iii) by artificially modifying our antenna's link-layer model, we can point at further potential benefits opened by different antenna designs
    • …
    corecore