15 research outputs found

    A cost-effective SCTP extension for hybrid vehicular networks

    Get PDF
    Connected vehicles are promoted with the use of different communication technologies for diverse applications and services. There is an ongoing debate in the research and industry communities whether short range communications based on IEEE 802.11p or cellular based on 3GPP LTE should be used for vehicular communications. In this paper, we propose a mechanism to utilise both short range and cellular communications simultaneously in a cost efficient way while providing the required quality of service to the users. A host connected to multiple networks is referred to as a multi-homed node and Stream Control Transmission Protocol (SCTP) is an IETF standard which supports multi-homing. We propose an extension to SCTP that takes into account not only path quality but also the cost of using each network. It is shown that the combination of QoS and cost information increases economic benefits for provider and end-users, while providing increased packet throughput

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Concurrent multipath transmission to improve performance for multi-homed devices in heterogeneous networks

    Get PDF
    Recent network technology developments have led to the emergence of a variety of access network technologies - such as IEEE 802.11, wireless local area network (WLAN), IEEE 802.16, Worldwide Interoperability for Microwave Access (WIMAX) and Long Term Evolution (LTE) - which can be integrated to offer ubiquitous access in a heterogeneous network environment. User devices also come equipped with multiple network interfaces to connect to the different network technologies, making it possible to establish multiple network paths between end hosts. However, the current connectivity settings confine the user devices to using a single network path at a time, leading to low utilization of the resources in a heterogeneous network and poor performance for demanding applications, such as high definition video streaming. The simultaneous use of multiple network interfaces, also called bandwidth aggregation, can increase application throughput and reduce the packets' end-to-end delays. However, multiple independent paths often have heterogeneous characteristics in terms of offered bandwidth, latency and loss rate, making it challenging to achieve efficient bandwidth aggregation. For instance, striping the flow's packets over multiple network paths with different latencies can cause packet reordering, which can significantly degrade performance of the current transport protocols. This thesis proposes three new solutions to mitigate the effects of network path heterogeneity on the performance of various concurrent multipath transmission settings. First, a network layer solution is proposed to stripe packets of delay-sensitive and high-bandwidth applications for concurrent transmission across multiple network paths. The solution leverages the paths' latency heterogeneity to reduce packet reordering, leading to minimal reordering delay, which improves performance of delay-sensitive applications. Second, multipath video streaming is developed for H.264 scalable video, where the reference video packets are adaptively assigned to low loss network paths to reduce drifting errors, thus combatting H.264 video distortion effectively. Finally, a new segment scheduling framework - which carefully considers path heterogeneity - is incorporated into the IETF Multipath TCP to improve throughput performance. The proposed solutions have been validated using a series of simulation experiments. The results reveal that the proposed solutions can enable efficient bandwidth aggregation for concurrent multipath transmission over heterogeneous network paths

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Network reputation-based quality optimization of video delivery in heterogeneous wireless environments

    Get PDF
    The mass-market adoption of high-end mobile devices and increasing amount of video traffic has led the mobile operators to adopt various solutions to help them cope with the explosion of mobile broadband data traffic, while ensuring high Quality of Service (QoS) levels to their services. Deploying small-cell base stations within the existing macro-cellular networks and offloading traffic from the large macro-cells to the small cells is seen as a promising solution to increase capacity and improve network performance at low cost. Parallel use of diverse technologies is also employed. The result is a heterogeneous network environment (HetNets), part of the next generation network deployments. In this context, this thesis makes a step forward towards the “Always Best Experience” paradigm, which considers mobile users seamlessly roaming in the HetNets environment. Supporting ubiquitous connectivity and enabling very good quality of rich mobile services anywhere and anytime is highly challenging, mostly due to the heterogeneity of the selection criteria, such as: application requirements (e.g., voice, video, data, etc.); different device types and with various capabilities (e.g., smartphones, netbooks, laptops, etc.); multiple overlapping networks using diverse technologies (e.g., Wireless Local Area Networks (IEEE 802.11), Cellular Networks Long Term Evolution (LTE), etc.) and different user preferences. In fact, the mobile users are facing a complex decision when they need to dynamically select the best value network to connect to in order to get the “Always Best Experience”. This thesis presents three major contributions to solve the problem described above: 1) The Location-based Network Prediction mechanism in heterogeneous wireless networks (LNP) provides a shortlist of best available networks to the mobile user based on his location, history record and routing plan; 2) Reputation-oriented Access Network Selection mechanism (RANS) selects the best reputation network from the available networks for the mobile user based on the best trade-off between QoS, energy consumptions and monetary cost. The network reputation is defined based on previous user-network interaction, and consequent user experience with the network. 3) Network Reputation-based Quality Optimization of Video Delivery in heterogeneous networks (NRQOVD) makes use of a reputation mechanism to enhance the video content quality via multipath delivery or delivery adaptation

    Future Internet Routing Design for Massive Failures and Attacks

    Get PDF
    Given the high complexity and increasing traffic load of the Internet, geo-correlated challenges caused by large-scale disasters or malicious attacks pose a significant threat to dependable network communications. To understand its characteristics, we propose a critical-region identification mechanism and incorporate its result into a new graph resilience metric, compensated Total Geographical Graph Diversity. Our metric is capable of characterizing and differentiating resiliency levels for different physical topologies. We further analyze the mechanisms attackers could exploit to maximize the damage and demonstrate the effectiveness of a network restoration plan. Based on the geodiversity in topologies, we present the path geodiverse problem and two heuristics to solve it more efficiently compared to the optimal algorithm. We propose the flow geodiverse problem and two optimization formulations to study the tradeoff among cost, end-to-end delay, and path skew with multipath forwarding. We further integrate the solution to above models into our cross-layer resilient protocol stack, ResTP–GeoDivRP. Our protocol stack is prototyped and implemented in the network simulator ns-3 and emulated in our KanREN testbed. By providing multiple GeoPaths, our protocol stack provides better path restoration performance than Multipath TCP
    corecore