136 research outputs found

    Antenna selection and performance analysis of MIMO spatial multiplexing systems

    Get PDF
    Multiple-input multiple-output spatial multiplexing (MIMO-SM) systems offer an essential benefit referred to as spatial multiplexing gain. Two important signal reception techniques for MIMO-SM systems are the zero-forcing (ZF) and ordered successive interference cancellation (OSIC) as, for example, in the case of the decision-feedback detector (DFD). This thesis studies the communication and signal processing aspects of MIMO-SM. We first investigate the bit error rate (BER) performance of the ZF receiver over transmit correlated Ricean flat-fading channels. In particular, for a MIMO channel with M transmit and N receive antennas, we derive an approximation for the average BER of each sub-stream. A closed-form expression for the optimal transmit correlation coefficient, which achieves the maximum capacity (i.e., uncorrelated case) of two-input two-output spatial multiplexing (TITO-SM) systems, is presented. We further propose an antenna selection (AS) approach for the DFD over independent Rayleigh flat-fading channels. The selected transmit antennas are those that maximize both the post-processing signal-to-noise ratio (SNR) at the receiver end, and the system capacity. An upper bound on the outage probability for the AS approach is derived. It is shown that the AS approach achieves a performance comparable to optimal capacity-based selection based on exhaustive search, but at a lower complexity. Finally, we investigate a cross-layer transmit AS approach for the DFD over spatially correlated Ricean flat-fading channels. The selected transmit antennas are those that maximize the link layer throughput of correlated MIMO channels. A closed-form expression for the system throughput with perfect channel estimation is first derived. We further analyze the system performance with pilot-aided channel estimation. In that, we derive a closed-form expression for the post-detection signal-to-noise-plus-interference ratio (SNIR) of each transmitted substream, conditioned on the estimated channels. The derived SNIR is then used to evaluate the overall system throughput. It is observed that the cross-layer AS approach always assigns the transmission to the antenna combination which sees better channel conditions, resulting in a substantial improvement over the optimal capacity-based AS approach. Considering a training-based channel estimation technique, we compare the performance of the proposed cross-layer AS with that of optimal capacity-based AS when employed with a training-based channel estimation. Our results show that the latter is more robust to imperfect channel estimation. However, in all cases, the cross-layer AS delivers higher throughput gains than the capacity-based A

    Performance Model for MRC Receivers with Adaptive Modulation and Coding in Rayleigh Fading Correlated Channels with Imperfect CSIT

    Get PDF
    RTUWO Advances in Wireless and Optical Communications 2015 (RTUWO 2015). 5-6 Nov Riga, Latvia.This paper presents a performance model of the packet reception process in a wireless link with one antenna transmitter and a multiple-antenna maximum-ratio combining (MRC) receiver. The objective is to address the performance evaluation of multiple antenna systems enabled with adaptive modulation and coding (AMC). Two main assumptions are used: 1) Rayleigh fading correlated channels, and 2) imperfect (outdated) channel state information at the transmitter side (CSIT). The results presented here suggest that spatial correlation not always affects the performance of the MRC receiver: at low signal-to-noise ratio (SNR), correlation can improve performance rather than degrading it. By contrast, at high SNR, correlation is found to always degrade performance. At high SNR, correlation tends to worse the degrading effects of imperfect CSIT, particularly when the number of antennas increases. Imperfect CSIT causes errors in the assignment of MCSs, thus reducing throughput performance. These errors become more evident at high SNR, particularly when the values of branch correlation and the number of antennas increase

    MIMO multi-hop relay systems

    Get PDF
    Multiple Input Multiple Output (MIMO) systems use multiple transmit and receive antennas to achieve higher data rates by transmitting multiple independent data systems. Transmission errors can be reduced by using Hybrid Automatic Repeat request (HARQ) combining techniques with MIMO systems. In this thesis, the use of HARQ for MIMO multi-hop communication is studied. We propose two MIMO HARQ combining methods which are based on using pre-combiningonly and a joint pre and post combining techniques. In addition to conventional single-hop transmission, HARQ schemes for MIMO multi-hop relay systems are also investigated. A novel approach is proposed to deal with the parallel HARQ processes in MIMO relay scenario. An information theoretic throughput analysis is performed to evaluate the performance of the relay system by employing various transmission techniques for relay-destination link. Evaluation is carried out on the delay involved while employing the relay systems as compared to single hop systems. Simulation results show that the proposed system can enhance the overall throughput performance of MIMO single-hop and multi-hop relay systems. Considering the recent research interest in green radio and requirements of reduced energy consumption by the wireless networks, we evaluated the energy efficiency of existing and proposed MIMO HARQ techniques for sensor and cellular networks. The results show that the proposed scheme is more energy efficient compared to other schemes in single-hop as well as multi-hop scenarios.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    MIMO multi-hop relay systems

    Get PDF
    Multiple Input Multiple Output (MIMO) systems use multiple transmit and receive antennas to achieve higher data rates by transmitting multiple independent data systems. Transmission errors can be reduced by using Hybrid Automatic Repeat request (HARQ) combining techniques with MIMO systems. In this thesis, the use of HARQ for MIMO multi-hop communication is studied. We propose two MIMO HARQ combining methods which are based on using pre-combiningonly and a joint pre and post combining techniques. In addition to conventional single-hop transmission, HARQ schemes for MIMO multi-hop relay systems are also investigated. A novel approach is proposed to deal with the parallel HARQ processes in MIMO relay scenario. An information theoretic throughput analysis is performed to evaluate the performance of the relay system by employing various transmission techniques for relay-destination link. Evaluation is carried out on the delay involved while employing the relay systems as compared to single hop systems. Simulation results show that the proposed system can enhance the overall throughput performance of MIMO single-hop and multi-hop relay systems. Considering the recent research interest in green radio and requirements of reduced energy consumption by the wireless networks, we evaluated the energy efficiency of existing and proposed MIMO HARQ techniques for sensor and cellular networks. The results show that the proposed scheme is more energy efficient compared to other schemes in single-hop as well as multi-hop scenarios.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Performance evaluation of cross-layer energy-efficient transmit antenna selection for spatial multiplexing systems

    Get PDF
    Abstract Multiple-input multiple-output (MIMO) and cognitive radio (CR) are key techniques for present and future high-speed wireless technologies. On the other hand, there are rising energy costs and greenhouse emissions associated with the provision of high-speed wireless communications. Consequently, the design of high-speed energy efficient systems is paramount for next-generation wireless systems. This thesis studies energy-efficient antenna selection for spatial multiplexing multiple-antenna systems from a cross-layer perspective, contrary to the norm, where physical-layer energy efficiency metrics are optimized. The enhanced system performance achieved by cross-layer designs in wireless networks motivates this research. The aim of the thesis is to propose and analyze novel cross-layer energy-efficient transmit antenna selection schemes that enhance energy efficiency and system performance - with regard to throughput, transmission latency, packet error rate and receiver buffer requirements. Firstly, this thesis derives the analytical expression for data link throughput for point-to-point spatial multiplexing multiple-antenna systems - which include MIMO and underlay CR MIMO systems - equipped with linear receivers with N-process stop-and-wait (N-SAW) as the automatic repeat request (ARQ) protocol. The performance of cross-layer transmit antenna selection, which maximizes the derived throughput metric, is then analyzed. The impact of packet size, number of SAW processes and the stalling of packets inside the receiver reordering buffer is considered in the investigation. The results show that the cross-layer approach, which takes into account system characteristics at both the data link and physical layers, has superior performance in comparison with the conventional physical-layer approach, which optimizes capacity. Secondly, this thesis proposes a cross-layer energy efficiency metric, based on the derived system throughput. Energy-efficient transmit antenna selection for spatial multiplexing MIMO systems, which maximizes the proposed cross-layer energy efficiency metric, by jointly optimizing the transmit antenna subset and transmit power, subject to spectral efficiency and transmit power constraints, is then introduced and analyzed. Additionally, adaptive modulation is incorporated into the proposed cross-layer scheme to enhance system performance. Cross-layer energyefficient transmit antenna selection for underlay CR MIMO systems, where interference constraints now come into play, is then considered. Lastly, this thesis develops novel reduced complexity versions of the proposed cross-layer energyefficient transmit antenna selection schemes - along with detailed complexity analysis - which shows that the proposed cross-layer approach attains significant energy efficiency and performance gains at affordable computational complexity

    Linear space-time modulation in multiple-antenna channels

    Get PDF
    This thesis develops linear space–time modulation techniques for (multi-antenna) multi-input multi-output (MIMO) and multiple-input single-output (MISO) wireless channels. Transmission methods tailored for such channels have recently emerged in a number of current and upcoming standards, in particular in 3G and "beyond 3G" wireless systems. Here, these transmission concepts are approached primarily from a signal processing perspective. The introduction part of the thesis describes the transmit diversity concepts included in the WCDMA and cdma2000 standards or standard discussions, as well as promising new transmission methods for MIMO and MISO channels, crucial for future high data-rate systems. A number of techniques developed herein have been adopted in the 3G standards, or are currently being proposed for such standards, with the target of improving data rates, signal quality, capacity or system flexibility. The thesis adopts a model involving matrix-valued modulation alphabets, with different dimensions usually defined over space and time. The symbol matrix is formed as a linear combination of symbols, and the space-dimension is realized by using multiple transmit and receive antennas. Many of the transceiver concepts and modulation methods developed herein provide both spatial multiplexing gain and diversity gain. For example, full-diversity full-rate schemes are proposed where the symbol rate equals the number of transmit antennas. The modulation methods are developed for open-loop transmission. Moreover, the thesis proposes related closed-loop transmission methods, where space–time modulation is combined either with automatic retransmission or multiuser scheduling.reviewe
    • …
    corecore