7 research outputs found

    Cellular networks for smart grid communication

    Get PDF
    The next-generation electric power system, known as smart grid, relies on a robust and reliable underlying communication infrastructure to improve the efficiency of electricity distribution. Cellular networks, e.g., LTE/LTE-A systems, appear as a promising technology to facilitate the smart grid evolution. Their inherent performance characteristics and well-established ecosystem could potentially unlock unprecedented use cases, enabling real-time and autonomous distribution grid operations. However, cellular technology was not originally intended for smart grid communication, associated with highly-reliable message exchange and massive device connectivity requirements. The fundamental differences between smart grid and human-type communication challenge the classical design of cellular networks and introduce important research questions that have not been sufficiently addressed so far. Motivated by these challenges, this doctoral thesis investigates novel radio access network (RAN) design principles and performance analysis for the seamless integration of smart grid traffic in future cellular networks. Specifically, we focus on addressing the fundamental RAN problems of network scalability in massive smart grid deployments and radio resource management for smart grid and human-type traffic. The main objective of the thesis lies on the design, analysis and performance evaluation of RAN mechanisms that would render cellular networks the key enabler for emerging smart grid applications. The first part of the thesis addresses the radio access limitations in LTE-based networks for reliable and scalable smart grid communication. We first identify the congestion problem in LTE random access that arises in large-scale smart grid deployments. To overcome this, a novel random access mechanism is proposed that can efficiently support real-time distribution automation services with negligible impact on the background traffic. Motivated by the stringent reliability requirements of various smart grid operations, we then develop an analytical model of the LTE random access procedure that allows us to assess the performance of event-based monitoring traffic under various load conditions and network configurations. We further extend our analysis to include the relation between the cell size and the availability of orthogonal random access resources and we identify an additional challenge for reliable smart grid connectivity. To this end, we devise an interference- and load-aware cell planning mechanism that enhances reliability in substation automation services. Finally, we couple the problem of state estimation in wide-area monitoring systems with the reliability challenges in information acquisition. Using our developed analytical framework, we quantify the impact of imperfect communication reliability in the state estimation accuracy and we provide useful insights for the design of reliability-aware state estimators. The second part of the thesis builds on the previous one and focuses on the RAN problem of resource scheduling and sharing for smart grid and human-type traffic. We introduce a novel scheduler that achieves low latency for distribution automation traffic while resource allocation is performed in a way that keeps the degradation of cellular users at a minimum level. In addition, we investigate the benefits of Device-to-Device (D2D) transmission mode for event-based message exchange in substation automation scenarios. We design a joint mode selection and resource allocation mechanism which results in higher data rates with respect to the conventional transmission mode via the base station. An orthogonal resource partition scheme between cellular and D2D links is further proposed to prevent the underutilization of the scarce cellular spectrum. The research findings of this thesis aim to deliver novel solutions to important RAN performance issues that arise when cellular networks support smart grid communication.Las redes celulares, p.e., los sistemas LTE/LTE-A, aparecen como una tecnología prometedora para facilitar la evolución de la próxima generación del sistema eléctrico de potencia, conocido como smart grid (SG). Sin embargo, la tecnología celular no fue pensada originalmente para las comunicaciones en la SG, asociadas con el intercambio fiable de mensajes y con requisitos de conectividad de un número masivo de dispositivos. Las diferencias fundamentales entre las comunicaciones en la SG y la comunicación de tipo humano desafían el diseño clásico de las redes celulares e introducen importantes cuestiones de investigación que hasta ahora no se han abordado suficientemente. Motivada por estos retos, esta tesis doctoral investiga los principios de diseño y analiza el rendimiento de una nueva red de acceso radio (RAN) que permita una integración perfecta del tráfico de la SG en las redes celulares futuras. Nos centramos en los problemas fundamentales de escalabilidad de la RAN en despliegues de SG masivos, y en la gestión de los recursos radio para la integración del tráfico de la SG con el tráfico de tipo humano. El objetivo principal de la tesis consiste en el diseño, el análisis y la evaluación del rendimiento de los mecanismos de las RAN que convertirán a las redes celulares en el elemento clave para las aplicaciones emergentes de las SGs. La primera parte de la tesis aborda las limitaciones del acceso radio en redes LTE para la comunicación fiable y escalable en SGs. En primer lugar, identificamos el problema de congestión en el acceso aleatorio de LTE que aparece en los despliegues de SGs a gran escala. Para superar este problema, se propone un nuevo mecanismo de acceso aleatorio que permite soportar de forma eficiente los servicios de automatización de la distribución eléctrica en tiempo real, con un impacto insignificante en el tráfico de fondo. Motivados por los estrictos requisitos de fiabilidad de las diversas operaciones en la SG, desarrollamos un modelo analítico del procedimiento de acceso aleatorio de LTE que nos permite evaluar el rendimiento del tráfico de monitorización de la red eléctrica basado en eventos bajo diversas condiciones de carga y configuraciones de red. Además, ampliamos nuestro análisis para incluir la relación entre el tamaño de celda y la disponibilidad de recursos de acceso aleatorio ortogonales, e identificamos un reto adicional para la conectividad fiable en la SG. Con este fin, diseñamos un mecanismo de planificación celular que tiene en cuenta las interferencias y la carga de la red, y que mejora la fiabilidad en los servicios de automatización de las subestaciones eléctricas. Finalmente, combinamos el problema de la estimación de estado en sistemas de monitorización de redes eléctricas de área amplia con los retos de fiabilidad en la adquisición de la información. Utilizando el modelo analítico desarrollado, cuantificamos el impacto de la baja fiabilidad en las comunicaciones sobre la precisión de la estimación de estado. La segunda parte de la tesis se centra en el problema de scheduling y compartición de recursos en la RAN para el tráfico de SG y el tráfico de tipo humano. Presentamos un nuevo scheduler que proporciona baja latencia para el tráfico de automatización de la distribución eléctrica, mientras que la asignación de recursos se realiza de un modo que mantiene la degradación de los usuarios celulares en un nivel mínimo. Además, investigamos los beneficios del modo de transmisión Device-to-Device (D2D) en el intercambio de mensajes basados en eventos en escenarios de automatización de subestaciones eléctricas. Diseñamos un mecanismo conjunto de asignación de recursos y selección de modo que da como resultado tasas de datos más elevadas con respecto al modo de transmisión convencional a través de la estación base. Finalmente, se propone un esquema de partición de recursos ortogonales entre enlaces celulares y D2Postprint (published version

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Delay and energy efficiency optimizations in smart grid neighbourhood area networks

    Get PDF
    Smart grids play a significant role in addressing climate change and growing energy demand. The role of smart grids includes reducing greenhouse gas emission reduction by providing alternative energy resources to the traditional grid. Smart grids exploit renewable energy resources into the power grid and provide effective two-way communications between smart grid domains for efficient grid control. The smart grid communication plays a pivotal role in coordinating energy generation, energy transmission, and energy distribution. Cellular technology with long term evolution (LTE)-based standards has been a preference for smart grid communication networks. However, integrating the cellular technology and the smart grid communication network puts forth a significant challenge for the LTE because LTE was initially invented for human centric broadband purpose. Delay and energy efficiency are two critical parameters in smart grid communication networks. Some data in smart grids are real-time delay-sensitive data which is crucial in ensuring stability of the grid. On the other hand, when abnormal events occur, most communication devices in smart grids are powered by local energy sources with limited power supply, therefore energy-efficient communications are required. This thesis studies energy-efficient and delay-optimization schemes in smart grid communication networks to make the grid more efficient and reliable. A joint power control and mode selection in device-to-device communications underlying cellular networks is proposed for energy management in the Future Renewable Electric Energy Delivery and Managements system. Moreover, a joint resource allocation and power control in heterogeneous cellular networks is proposed for phasor measurement units to achieve efficient grid control. Simulation results are presented to show the effectiveness of the proposed schemes

    Cross-layer Design for Multiuser OFDMA Systems with Cooperative Game and MMPP Queuing Considerations

    No full text
    In this paper, a queue aware game theoretic cross-layer scheme is introduced for multiuser orthogonal frequency division multiple access (OFDMA) wireless systems. A joint scheduling process that combines an adaptive modulation (AM) at the physical layer (PHYL) along with a discrete Markov modulated Poisson process (dMMPP) at the medium access control (MAC) layer, is devised. Moreover, relied on this cooperative game theoretic architecture, we formulate an optimization problem on a Nash bargaining solution (NBS) basis. Finally, the allocation policies result an optimal tradeoff between proportional fairness and throughput maximization that fits in realistic wireless networks scenarios
    corecore