1,004 research outputs found

    Early Predictability of Grasping Movements by Neurofunctional Representations: A Feasibility Study

    Get PDF
    Human grasping is a relatively fast process and control signals for upper limb prosthetics cannot be generated and processed in a sufficiently timely manner. The aim of this study was to examine whether discriminating between different grasping movements at a cortical level can provide information prior to the actual grasping process, allowing for more intuitive prosthetic control. EEG datasets were captured from 13 healthy subjects who repeatedly performed 16 activities of daily living. Common classifiers were trained on features extracted from the waking-state frequency and total-frequency time domains. Different training scenarios were used to investigate whether classifiers can already be pre-trained by base networks for fine-tuning with data of a target person. A support vector machine algorithm with spatial covariance matrices as EEG signal descriptors based on Riemannian geometry showed the highest balanced accuracy (0.91 ± 0.05 SD) in discriminating five grasping categories according to the Cutkosky taxonomy in an interval from 1.0 s before to 0.5 s after the initial movement. Fine-tuning did not improve any classifier. No significant accuracy differences between the two frequency domains were apparent (p > 0.07). Neurofunctional representations enabled highly accurate discrimination of five different grasping movements. Our results indicate that, for upper limb prosthetics, it is possible to use them in a sufficiently timely manner and to predict the respective grasping task as a discrete category to kinematically prepare the prosthetic hand

    Cortico-muscular coupling to control a hybrid brain-computer interface for upper limb motor rehabilitation: A pseudo-online study on stroke patients

    Get PDF
    Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke have proven their efficacy to enhance upper limb motor recovery by reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both central and peripheral activation and are frequently used in assistive BCIs to improve classification performances. However, in a rehabilitative context, brain and muscular features should be extracted to promote a favorable motor outcome, reinforcing not only the volitional control in the central motor system, but also the effective projection of motor commands to target muscles, i.e., central-to-peripheral communication. For this reason, we considered cortico-muscular coupling (CMC) as a feature for a h-BCI devoted to post-stroke upper limb motor rehabilitation. In this study, we performed a pseudo-online analysis on 13 healthy participants (CTRL) and 12 stroke patients (EXP) during executed (CTRL, EXP unaffected arm) and attempted (EXP affected arm) hand grasping and extension to optimize the translation of CMC computation and CMC-based movement detection from offline to online. Results showed that updating the CMC computation every 125 ms (shift of the sliding window) and accumulating two predictions before a final classification decision were the best trade-off between accuracy and speed in movement classification, independently from the movement type. The pseudo-online analysis on stroke participants revealed that both attempted and executed grasping/extension can be classified through a CMC-based movement detection with high performances in terms of classification speed (mean delay between movement detection and EMG onset around 580 ms) and accuracy (hit rate around 85%). The results obtained by means of this analysis will ground the design of a novel non-invasive h-BCI in which the control feature is derived from a combined EEG and EMG connectivity pattern estimated during upper limb movement attempts

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients

    Noninvasive Neuroprosthetic Control of Grasping by Amputees

    Get PDF
    Smooth coordination and fine temporal control of muscles by the brain allows us to effortlessly pre-shape our hand to grasp different objects. Correlates of motor control for grasping have been found across wide-spread cortical areas, with diverse signal features. These signals have been harnessed by implanting intracortical electrodes and used to control the motion of robotic hands by tetraplegics, using algorithms called brain-machine interfaces (BMIs). Signatures of motor control signal encoding mechanisms of the brain in macro-scale signals such as electroencephalography (EEG) are unknown, and could potentially be used to develop noninvasive brain-machine interfaces. Here we show that a) low frequency (0.1 – 1 Hz) time domain EEG contains information about grasp pre-shaping in able-bodies individuals, and b) This information can be used to control pre-shaping motion of a robotic hand by amputees. In the first study, we recorded simultaneous EEG and hand kinematics as 5 able-bodies individuals grasped various objects. Linear decoders using low delta band EEG amplitudes accurately predicted hand pre-shaping kinematics during grasping. Correlation coefficient between predicted and actual kinematics was r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05 for the first 3 synergies. In the second study, two transradial amputees (A1 and A2) controlled a prosthetic hand to grasp two objects using a closed-loop BMI with low delta band EEG. This study was conducted longitudinally in 12 sessions spread over 38 days. A1 achieved a 63% success rate, with 11 sessions significantly above chance. A2 achieved a 32% success rate, with 2 sessions significantly above chance. Previous methods of EEG-based BMIs used frequency domain features, and were thought to have a low signal-to-noise ratio making them unsuitable for control of dexterous tasks like grasping. Our results demonstrate that time-domain EEG contains information about grasp pre-shaping, which can be harnessed for neuroprosthetic control.Electrical and Computer Engineering, Department o

    Advances in Clinical Neurophysiology

    Get PDF
    Including some of the newest advances in the field of neurophysiology, this book can be considered as one of the treasures that interested scientists would like to collect. It discusses many disciplines of clinical neurophysiology that are, currently, crucial in the practice as they explain methods and findings of techniques that help to improve diagnosis and to ensure better treatment. While trying to rely on evidence-based facts, this book presents some new ideas to be applied and tested in the clinical practice. Advances in Clinical Neurophysiology is important not only for the neurophysiologists but also for clinicians interested or working in wide range of specialties such as neurology, neurosurgery, intensive care units, pediatrics and so on. Generally, this book is written and designed to all those involved in, interpreting or requesting neurophysiologic tests

    Neurobehavioral Strategies of Skill Acquisition in Left and Right Hand Dominant Individuals

    Get PDF
    The brain consists of vast networks of connected pathways communicating through synchronized electrochemical activity propagated along fiber tracts. The current understanding is that the brain has a modular organization where regions of specialized processes are dynamically coupled through long-range projections of dense axonal networks connecting spatially distinct regions enabling signal transfer necessary for all complex thought and behavior, including regulation of movement. The central objective of the dissertation was to understand how sensorimotor information is integrated, allowing for adaptable motor behavior and skill acquisition in the left-and right-hand dominant populations. To this end participants, of both left- and right-hand dominance, repeatedly completed a visually guided, force matching task while neurobiological and neurobehavioral outcome measurements were continuously recorded via EEG and EMG. Functional connectivity and graph theoretical measurements were derived from EEG. Cortico-cortical coherence patterns were used to infer neurostrategic discrepancies employed in the execution of a motor task for each population. EEG activity was also correlated with neuromuscular activity from EMG to calculate cortico-muscular connectivity. Neurological patterns and corresponding behavioral changes were used to express how hand dominance influenced the developing motor plan, thereby increasing understanding of the sensorimotor integration process. The cumulative findings indicated fundamental differences in how left- and right-hand dominant populations interact with the world. The right-hand dominant group was found to rely on visual information to inform motor behavior where the left-hand dominant group used visual information to update motor behavior. The left-hand group was found to have a more versatile motor plan, adaptable to both dominant, nondominant, and bimanual tasks. Compared to the right-hand group it might be said that they were more successful in encoding the task, however behaviorally they performed the same. The implications of the findings are relevant to both clinical and performance applications providing insight as to potential alternative methods of information integration. The inclusion of the left-hand dominant population in the growing conceptualization of the brain will generate a more complete, stable, and accurate understanding of our complex biology

    Implementing physiologically-based approaches to improve Brain-Computer Interfaces usability in post-stroke motor rehabilitation

    Get PDF
    Stroke is one of the leading causes of long-term motor disability and, as such, directly impacts on daily living activities. Identifying new strategies to recover motor function is a central goal of clinical research. In the last years the approach to the post-stroke function restore has moved from the physical rehabilitation to the evidence-based neurological rehabilitation. Brain-Computer Interface (BCI) technology offers the possibility to detect, monitor and eventually modulate brain activity. The potential of guiding altered brain activity back to a physiological condition through BCI and the assumption that this recovery of brain activity leads to the restoration of behaviour is the key element for the use of BCI systems for therapeutic purposes. To bridge the gap between research-oriented methodology in BCI design and the usability of a system in the clinical realm requires efforts towards BCI signal processing procedures that would optimize the balance between system accuracy and usability. The thesis focused on this issue and aimed to propose new algorithms and signal processing procedures that, by combining physiological and engineering approaches, would provide the basis for designing more usable BCI systems to support post-stroke motor recovery. Results showed that introduce new physiologically-driven approaches to the pre-processing of BCI data, methods to support professional end-users in the BCI control parameter selection according to evidence-based rehabilitation principles and algorithms for the parameter adaptation in time make the BCI technology more affordable, more efficient, and more usable and, therefore, transferable to the clinical realm
    • …
    corecore