687 research outputs found

    Attentive Aspect Modeling for Review-aware Recommendation

    Full text link
    In recent years, many studies extract aspects from user reviews and integrate them with ratings for improving the recommendation performance. The common aspects mentioned in a user's reviews and a product's reviews indicate indirect connections between the user and product. However, these aspect-based methods suffer from two problems. First, the common aspects are usually very sparse, which is caused by the sparsity of user-product interactions and the diversity of individual users' vocabularies. Second, a user's interests on aspects could be different with respect to different products, which are usually assumed to be static in existing methods. In this paper, we propose an Attentive Aspect-based Recommendation Model (AARM) to tackle these challenges. For the first problem, to enrich the aspect connections between user and product, besides common aspects, AARM also models the interactions between synonymous and similar aspects. For the second problem, a neural attention network which simultaneously considers user, product and aspect information is constructed to capture a user's attention towards aspects when examining different products. Extensive quantitative and qualitative experiments show that AARM can effectively alleviate the two aforementioned problems and significantly outperforms several state-of-the-art recommendation methods on top-N recommendation task.Comment: Camera-ready manuscript for TOI

    Frequency Enhanced Hybrid Attention Network for Sequential Recommendation

    Full text link
    The self-attention mechanism, which equips with a strong capability of modeling long-range dependencies, is one of the extensively used techniques in the sequential recommendation field. However, many recent studies represent that current self-attention based models are low-pass filters and are inadequate to capture high-frequency information. Furthermore, since the items in the user behaviors are intertwined with each other, these models are incomplete to distinguish the inherent periodicity obscured in the time domain. In this work, we shift the perspective to the frequency domain, and propose a novel Frequency Enhanced Hybrid Attention Network for Sequential Recommendation, namely FEARec. In this model, we firstly improve the original time domain self-attention in the frequency domain with a ramp structure to make both low-frequency and high-frequency information could be explicitly learned in our approach. Moreover, we additionally design a similar attention mechanism via auto-correlation in the frequency domain to capture the periodic characteristics and fuse the time and frequency level attention in a union model. Finally, both contrastive learning and frequency regularization are utilized to ensure that multiple views are aligned in both the time domain and frequency domain. Extensive experiments conducted on four widely used benchmark datasets demonstrate that the proposed model performs significantly better than the state-of-the-art approaches.Comment: 11 pages, 7 figures, The 46th International ACM SIGIR Conference on Research and Development in Information Retrieva

    Self-Supervised Multi-Modal Sequential Recommendation

    Full text link
    With the increasing development of e-commerce and online services, personalized recommendation systems have become crucial for enhancing user satisfaction and driving business revenue. Traditional sequential recommendation methods that rely on explicit item IDs encounter challenges in handling item cold start and domain transfer problems. Recent approaches have attempted to use modal features associated with items as a replacement for item IDs, enabling the transfer of learned knowledge across different datasets. However, these methods typically calculate the correlation between the model's output and item embeddings, which may suffer from inconsistencies between high-level feature vectors and low-level feature embeddings, thereby hindering further model learning. To address this issue, we propose a dual-tower retrieval architecture for sequence recommendation. In this architecture, the predicted embedding from the user encoder is used to retrieve the generated embedding from the item encoder, thereby alleviating the issue of inconsistent feature levels. Moreover, in order to further improve the retrieval performance of the model, we also propose a self-supervised multi-modal pretraining method inspired by the consistency property of contrastive learning. This pretraining method enables the model to align various feature combinations of items, thereby effectively generalizing to diverse datasets with different item features. We evaluate the proposed method on five publicly available datasets and conduct extensive experiments. The results demonstrate significant performance improvement of our method

    Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation

    Full text link
    Self-supervised sequential recommendation significantly improves recommendation performance by maximizing mutual information with well-designed data augmentations. However, the mutual information estimation is based on the calculation of Kullback Leibler divergence with several limitations, including asymmetrical estimation, the exponential need of the sample size, and training instability. Also, existing data augmentations are mostly stochastic and can potentially break sequential correlations with random modifications. These two issues motivate us to investigate an alternative robust mutual information measurement capable of modeling uncertainty and alleviating KL divergence limitations. To this end, we propose a novel self-supervised learning framework based on Mutual WasserStein discrepancy minimization MStein for the sequential recommendation. We propose the Wasserstein Discrepancy Measurement to measure the mutual information between augmented sequences. Wasserstein Discrepancy Measurement builds upon the 2-Wasserstein distance, which is more robust, more efficient in small batch sizes, and able to model the uncertainty of stochastic augmentation processes. We also propose a novel contrastive learning loss based on Wasserstein Discrepancy Measurement. Extensive experiments on four benchmark datasets demonstrate the effectiveness of MStein over baselines. More quantitative analyses show the robustness against perturbations and training efficiency in batch size. Finally, improvements analysis indicates better representations of popular users or items with significant uncertainty. The source code is at https://github.com/zfan20/MStein.Comment: Updated with the correction of the asymmetric mistake on the mutual information connectio

    DiffuRec: A Diffusion Model for Sequential Recommendation

    Full text link
    Mainstream solutions to Sequential Recommendation (SR) represent items with fixed vectors. These vectors have limited capability in capturing items' latent aspects and users' diverse preferences. As a new generative paradigm, Diffusion models have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this paper, we make the very first attempt to adapt Diffusion model to SR and propose DiffuRec, for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in DiffuRec, which reflect user's multiple interests and item's various aspects adaptively. In diffusion phase, DiffuRec corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterwards, the item representation is fed into an Approximator for target item representation reconstruction. In reversion phase, based on user's historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply rounding operation for target item prediction. Experiments over four datasets show that DiffuRec outperforms strong baselines by a large margin

    A Comprehensive Survey on Generative Diffusion Models for Structured Data

    Full text link
    In recent years, generative diffusion models have achieved a rapid paradigm shift in deep generative models by showing groundbreaking performance across various applications. Meanwhile, structured data, encompassing tabular and time series data, has been received comparatively limited attention from the deep learning research community, despite its omnipresence and extensive applications. Thus, there is still a lack of literature and its reviews on structured data modelling via diffusion models, compared to other data modalities such as visual and textual data. To address this gap, we present a comprehensive review of recently proposed diffusion models in the field of structured data. First, this survey provides a concise overview of the score-based diffusion model theory, subsequently proceeding to the technical descriptions of the majority of pioneering works that used structured data in both data-driven general tasks and domain-specific applications. Thereafter, we analyse and discuss the limitations and challenges shown in existing works and suggest potential research directions. We hope this review serves as a catalyst for the research community, promoting developments in generative diffusion models for structured data.Comment: 20 pages, 1 figure, 2 table
    corecore