1,655 research outputs found

    A Multiplicative Model for Learning Distributed Text-Based Attribute Representations

    Full text link
    In this paper we propose a general framework for learning distributed representations of attributes: characteristics of text whose representations can be jointly learned with word embeddings. Attributes can correspond to document indicators (to learn sentence vectors), language indicators (to learn distributed language representations), meta-data and side information (such as the age, gender and industry of a blogger) or representations of authors. We describe a third-order model where word context and attribute vectors interact multiplicatively to predict the next word in a sequence. This leads to the notion of conditional word similarity: how meanings of words change when conditioned on different attributes. We perform several experimental tasks including sentiment classification, cross-lingual document classification, and blog authorship attribution. We also qualitatively evaluate conditional word neighbours and attribute-conditioned text generation.Comment: 11 pages. An earlier version was accepted to the ICML-2014 Workshop on Knowledge-Powered Deep Learning for Text Minin

    Demand Forecasting at Low Aggregation Levels using Factored Conditional Restricted Boltzmann Machine.

    Get PDF
    The electrical demand forecasting problem can be regarded as a non-linear time series prediction problem depending on many complex factors since it is required at various aggregation levels and at high resolution. To solve this challenging problem, various time series and machine learning approaches has been proposed in the literature. As an evolution of neural network-based prediction methods, deep learning techniques are expected to increase the prediction accuracy by being stochastic and allowing bi-directional connections between neurons. In this paper, we investigate a newly developed deep learning model for time series prediction, namely Factored Conditional Restricted Boltzmann Machine (FCRBM), and extend it for demand forecasting. The assessment is made on the EcoGrid EU dataset, consisting of aggregated electric power consumption, price and meteorological data collected from 1900 customers. The households are equipped with local generation and smart appliances capable of responding to real-time pricing signals. The results show that for the energy prediction problem solved here, FCRBM outperforms the benchmark machine learning approach, i.e. Support Vector Machine

    Improving Maritime Traffic Emission Estimations on Missing Data with CRBMs

    Full text link
    Maritime traffic emissions are a major concern to governments as they heavily impact the Air Quality in coastal cities. Ships use the Automatic Identification System (AIS) to continuously report position and speed among other features, and therefore this data is suitable to be used to estimate emissions, if it is combined with engine data. However, important ship features are often inaccurate or missing. State-of-the-art complex systems, like CALIOPE at the Barcelona Supercomputing Center, are used to model Air Quality. These systems can benefit from AIS based emission models as they are very precise in positioning the pollution. Unfortunately, these models are sensitive to missing or corrupted data, and therefore they need data curation techniques to significantly improve the estimation accuracy. In this work, we propose a methodology for treating ship data using Conditional Restricted Boltzmann Machines (CRBMs) plus machine learning methods to improve the quality of data passed to emission models. Results show that we can improve the default methods proposed to cover missing data. In our results, we observed that using our method the models boosted their accuracy to detect otherwise undetectable emissions. In particular, we used a real data-set of AIS data, provided by the Spanish Port Authority, to estimate that thanks to our method, the model was able to detect 45% of additional emissions, of additional emissions, representing 152 tonnes of pollutants per week in Barcelona and propose new features that may enhance emission modeling.Comment: 12 pages, 7 figures. Postprint accepted manuscript, find the full version at Engineering Applications of Artificial Intelligence (https://doi.org/10.1016/j.engappai.2020.103793

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning
    corecore