688 research outputs found

    Localizing noncooperative receiver through full-duplex amplify-and-forward relay

    Get PDF
    Localizing noncooperative transmitter (Tx) and receiver (Rx) that belong to another system is important in many scenarios, e.g., interference management in cognitive radio systems and user behavior learning in ad hoc wireless networks. However, obtaining the locations of these nodes in particular in frequency-division duplex systems is challenging, since the localization network usually does not know the spectrum that the Rx uses for backward transmission. In this paper, we propose to use the full-duplex relay technique to localize a noncooperative Rx, which does not require the knowledge of the Rx’s backward transmission spectrum. In the proposed method, localization sensors alternatively act as a full-duplex amplify-and-forward relay to trigger the power control of the Tx–Rx link. Then, by detecting the power adjustment of the Tx, each localization sensor can estimate the time difference of arrival between the direct and relay signals. Finally, the Rx location can be calculated from triangulation. Simulation results show that the proposed method can effectively localize the Rx, which validates its potential for receiver-aware applications and services

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Channel Estimation in Half and Full Duplex Relays

    Get PDF
    abstract: Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial. The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, a closed-form for the optimal ratio of data energy to total energy is derived. It can be shown that the achievable rate is a monotonically increasing function of the data length. The asymmetric case is discussed as well. Efficient and accurate training schemes for FD TWRs are essential for profiting from the inherent spectrally efficient structures of both FD and TWRs. A novel one-block training scheme with a maximum likelihood (ML) estimator is proposed to estimate the channels between the nodes and the residual self-interference (RSI) channel simultaneously. Baseline training schemes are also considered to compare with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes are derived and analyzed by using the asymptotic properties of Toeplitz matrices. The benefit of estimating the RSI channel is shown analytically in terms of Fisher information. To obtain fundamental and analytic results of how the RSI affects the spectral efficiency, one-way FD relay systems are studied. Optimal training design and ML channel estimation are proposed to estimate the RSI channel. The CRBs are derived and analyzed in closed-form so that the optimal training sequence can be found via minimizing the CRB. Extensions of the training scheme to frequency-selective channels and multiple relays are also presented. Simultaneously sensing and transmission in an FD cognitive radio system with MIMO is considered. The trade-off between the transmission rate and the detection accuracy is characterized by the sum-rate of the primary and the secondary users. Different beamforming and combining schemes are proposed and compared.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore