137 research outputs found

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table

    Scaling Distributed Ledgers and Privacy-Preserving Applications

    Get PDF
    This thesis proposes techniques aiming to make blockchain technologies and smart contract platforms practical by improving their scalability, latency, and privacy. This thesis starts by presenting the design and implementation of Chainspace, a distributed ledger that supports user defined smart contracts and execute user-supplied transactions on their objects. The correct execution of smart contract transactions is publicly verifiable. Chainspace is scalable by sharding state; it is secure against subsets of nodes trying to compromise its integrity or availability properties through Byzantine Fault Tolerance (BFT). This thesis also introduces a family of replay attacks against sharded distributed ledgers targeting cross-shard consensus protocols; they allow an attacker, with network access only, to double-spend resources with minimal efforts. We then build Byzcuit, a new cross-shard consensus protocol that is immune to those attacks and that is tailored to run at the heart of Chainspace. Next, we propose FastPay, a high-integrity settlement system for pre-funded payments that can be used as a financial side-infrastructure for Chainspace to support low-latency retail payments. This settlement system is based on Byzantine Consistent Broadcast as its core primitive, foregoing the expenses of full atomic commit channels (consensus). The resulting system has extremely low-latency for both confirmation and payment finality. Finally, this thesis proposes Coconut, a selective disclosure credential scheme supporting distributed threshold issuance, public and private attributes, re-randomization, and multiple unlinkable selective attribute revelations. It ensures authenticity and availability even when a subset of credential issuing authorities are malicious or offline, and natively integrates with Chainspace to enable a number of scalable privacy-preserving applications

    Blockchain and PUF-based secure key establishment protocol for cross-domain digital twins in industrial Internet of Things architecture

    Get PDF
    The Industrial Internet of Things (IIoT) is a technology that connects devices to collect data and conduct in-depth analysis to provide value-added services to industries. The integration of the physical and digital domains is crucial for unlocking the full potential of the IIoT, and digital twins can facilitate this integration by providing a virtual representation of real-world entities. By combining digital twins with the IIoT, industries can simulate, predict, and control physical behaviors, enabling them to achieve broader value and support industry 4.0 and 5.0. Constituents of cooperative IIoT domains tend to interact and collaborate during their complicated operations. To secure such interaction and collaborations, we introduce a blockchain-based cross-domain authentication protocol for IIoT. The blockchain maintains only each domain's dynamic accumulator, which accumulates crucial materials derived from devices, decreasing the overhead. In addition, we use the on-chain accumulator to effectively validate the unlinkable identities of cross-domain IIoT devices. The implementation of the concept reveals the fact that our protocol is efficient and reliable. This efficiency and reliability of our protocol is also substantiated through comparison with state-of-the-art literature. In contrast to related protocols, our protocol exhibits a minimum 22.67% increase in computation cost efficiency and a 16.35% rise in communication cost efficiency. The developed protocol guarantees data transfer security across the domain and thwarts IoT devices from potential physical attacks. Additionally, in order to protect privacy, anonymity and unlinkability are also guaranteed. [Abstract copyright: Copyright © 2023. Production and hosting by Elsevier B.V.

    Anonymous authentication of membership in dynamic groups

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (leaves 34-36).by Todd C. Parnell.S.B.and M.Eng

    Mining entity and relation structures from text: An effort-light approach

    Get PDF
    In today's computerized and information-based society, text data is rich but often also "messy". We are inundated with vast amounts of text data, written in different genres (from grammatical news articles and scientific papers to noisy social media posts), covering topics in various domains (e.g., medical records, corporate reports, and legal acts). Can computational systems automatically identify various real-world entities mentioned in a new corpus and use them to summarize recent news events reliably? Can computational systems capture and represent different relations between biomedical entities from massive and rapidly emerging life science literature? How might computational systems represent the factual information contained in a collection of medical reports to support answering detailed queries or running data mining tasks? While people can easily access the documents in a gigantic collection with the help of data management systems, they struggle to gain insights from such a large volume of text data: document understanding calls for in-depth content analysis, content analysis itself may require domain-specific knowledge, and over a large corpus, a complete read and analysis by domain experts will invariably be subjective, time-consuming and relatively costly. To turn such massive, unstructured text corpora into machine-readable knowledge, one of the grand challenges is to gain an understanding of the typed entity and relation structures in the corpus. This thesis focuses on developing principled and scalable methods for extracting typed entities and relationship with light human annotation efforts, to overcome the barriers in dealing with text corpora of various domains, genres and languages. In addition to our effort-light methodologies, we also contribute effective, noise-robust models and real-world applications in two main problems: - Identifying Typed Entities: We show how to perform data-driven text segmentation to recognize entities mentioned in text as well as their surrounding relational phrases, and infer types for entity mentions by propagating "distant supervision" (from external knowledge bases) via relational phrases. In order to resolve data sparsity issue during propagation, we complement the type propagation with clustering of functionally similar relational phrases based on their redundant occurrences in large corpus. Apart from entity recognition and coarse-grained typing, we claim that fine-grained entity typing is beneficial for many downstream applications and very challenging due to the context-agnostic label assignment in distant supervision, and we present principled, efficient models and algorithms for inferring fine-grained type path for entity mention based on the sentence context. - Extracting Typed Entity Relationships: We extend the idea of entity recognition and typing to extract relationships between entity mentions and infer their relation types. We show how to effectively model the noisy distant supervision for relationship extraction, and how to avoid the error propagation usually happened in incremental extraction pipeline by integrating typing of entities and relationships in a principled framework. The proposed approach leverages noisy distant supervision for both entities and relationships, and simultaneously learn to uncover the most confident labels as well as modeling the semantic similarity between true labels and text features. In practice, text data is often highly variable: corpora from different domains, genres or languages have typically required for effective processing a wide range of language resources (e.g., grammars, vocabularies, and gazetteers). The “massive” and “messy” nature of text data poses significant challenges to creating tools for automated extraction of entity and relation structures that scale with text volume. State-of-the-art information extraction systems have relied on large amounts of task-specific labeled data (e.g., annotating terrorist attack-related entities in web forum posts written in Arabic), to construct machine-learning models (e.g., deep neural networks). However, even though domain experts can manually create high-quality training data for specific tasks as needed, both the scale and efficiency of such a manual process are limited. This thesis harnesses the power of ``big text data'' and focuses on creating generic solutions for efficient construction of customized machine-learning models for mining typed entities and relationships, relying on only limited amounts of (or even no) task-specific training data. The approaches developed in the thesis are thus general and applicable to all kinds of text corpora in different natural languages, enabling quick deployment of data mining applications. We provide scalable algorithmic approaches that leverage external knowledge bases as sources of supervision and exploit data redundancy in massive text corpora, and we show how to use them in large-scale, real-world applications, including structured exploration and analysis of life sciences literature, extracting document facets from technical documents, document summarization, entity attribute discovery, and open-domain information extraction
    • …
    corecore