30,133 research outputs found

    A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels

    Full text link
    The recent success of deep neural networks is powered in part by large-scale well-labeled training data. However, it is a daunting task to laboriously annotate an ImageNet-like dateset. On the contrary, it is fairly convenient, fast, and cheap to collect training images from the Web along with their noisy labels. This signifies the need of alternative approaches to training deep neural networks using such noisy labels. Existing methods tackling this problem either try to identify and correct the wrong labels or reweigh the data terms in the loss function according to the inferred noisy rates. Both strategies inevitably incur errors for some of the data points. In this paper, we contend that it is actually better to ignore the labels of some of the data points than to keep them if the labels are incorrect, especially when the noisy rate is high. After all, the wrong labels could mislead a neural network to a bad local optimum. We suggest a two-stage framework for the learning from noisy labels. In the first stage, we identify a small portion of images from the noisy training set of which the labels are correct with a high probability. The noisy labels of the other images are ignored. In the second stage, we train a deep neural network in a semi-supervised manner. This framework effectively takes advantage of the whole training set and yet only a portion of its labels that are most likely correct. Experiments on three datasets verify the effectiveness of our approach especially when the noisy rate is high

    Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks

    Full text link
    Collecting large training datasets, annotated with high-quality labels, is costly and time-consuming. This paper proposes a novel framework for training deep convolutional neural networks from noisy labeled datasets that can be obtained cheaply. The problem is formulated using an undirected graphical model that represents the relationship between noisy and clean labels, trained in a semi-supervised setting. In our formulation, the inference over latent clean labels is tractable and is regularized during training using auxiliary sources of information. The proposed model is applied to the image labeling problem and is shown to be effective in labeling unseen images as well as reducing label noise in training on CIFAR-10 and MS COCO datasets.Comment: To appear in Neural Information Processing Systems (NIPS) 201

    Deep Learning is Robust to Massive Label Noise

    Full text link
    Deep neural networks trained on large supervised datasets have led to impressive results in image classification and other tasks. However, well-annotated datasets can be time-consuming and expensive to collect, lending increased interest to larger but noisy datasets that are more easily obtained. In this paper, we show that deep neural networks are capable of generalizing from training data for which true labels are massively outnumbered by incorrect labels. We demonstrate remarkably high test performance after training on corrupted data from MNIST, CIFAR, and ImageNet. For example, on MNIST we obtain test accuracy above 90 percent even after each clean training example has been diluted with 100 randomly-labeled examples. Such behavior holds across multiple patterns of label noise, even when erroneous labels are biased towards confusing classes. We show that training in this regime requires a significant but manageable increase in dataset size that is related to the factor by which correct labels have been diluted. Finally, we provide an analysis of our results that shows how increasing noise decreases the effective batch size

    Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels

    Full text link
    Noisy labels are ubiquitous in real-world datasets, which poses a challenge for robustly training deep neural networks (DNNs) as DNNs usually have the high capacity to memorize the noisy labels. In this paper, we find that the test accuracy can be quantitatively characterized in terms of the noise ratio in datasets. In particular, the test accuracy is a quadratic function of the noise ratio in the case of symmetric noise, which explains the experimental findings previously published. Based on our analysis, we apply cross-validation to randomly split noisy datasets, which identifies most samples that have correct labels. Then we adopt the Co-teaching strategy which takes full advantage of the identified samples to train DNNs robustly against noisy labels. Compared with extensive state-of-the-art methods, our strategy consistently improves the generalization performance of DNNs under both synthetic and real-world training noise.Comment: Correspondence to: Guangyong Chen <[email protected]

    Unsupervised Feature Learning Based on Deep Models for Environmental Audio Tagging

    Full text link
    Environmental audio tagging aims to predict only the presence or absence of certain acoustic events in the interested acoustic scene. In this paper we make contributions to audio tagging in two parts, respectively, acoustic modeling and feature learning. We propose to use a shrinking deep neural network (DNN) framework incorporating unsupervised feature learning to handle the multi-label classification task. For the acoustic modeling, a large set of contextual frames of the chunk are fed into the DNN to perform a multi-label classification for the expected tags, considering that only chunk (or utterance) level rather than frame-level labels are available. Dropout and background noise aware training are also adopted to improve the generalization capability of the DNNs. For the unsupervised feature learning, we propose to use a symmetric or asymmetric deep de-noising auto-encoder (sDAE or aDAE) to generate new data-driven features from the Mel-Filter Banks (MFBs) features. The new features, which are smoothed against background noise and more compact with contextual information, can further improve the performance of the DNN baseline. Compared with the standard Gaussian Mixture Model (GMM) baseline of the DCASE 2016 audio tagging challenge, our proposed method obtains a significant equal error rate (EER) reduction from 0.21 to 0.13 on the development set. The proposed aDAE system can get a relative 6.7% EER reduction compared with the strong DNN baseline on the development set. Finally, the results also show that our approach obtains the state-of-the-art performance with 0.15 EER on the evaluation set of the DCASE 2016 audio tagging task while EER of the first prize of this challenge is 0.17.Comment: 10 pages, dcase 2016 challeng

    Human-Guided Learning of Column Networks: Augmenting Deep Learning with Advice

    Full text link
    Recently, deep models have been successfully applied in several applications, especially with low-level representations. However, sparse, noisy samples and structured domains (with multiple objects and interactions) are some of the open challenges in most deep models. Column Networks, a deep architecture, can succinctly capture such domain structure and interactions, but may still be prone to sub-optimal learning from sparse and noisy samples. Inspired by the success of human-advice guided learning in AI, especially in data-scarce domains, we propose Knowledge-augmented Column Networks that leverage human advice/knowledge for better learning with noisy/sparse samples. Our experiments demonstrate that our approach leads to either superior overall performance or faster convergence (i.e., both effective and efficient).Comment: Under Review at 'Machine Learning Journal' (MLJ

    Large Margin Deep Networks for Classification

    Full text link
    We present a formulation of deep learning that aims at producing a large margin classifier. The notion of margin, minimum distance to a decision boundary, has served as the foundation of several theoretically profound and empirically successful results for both classification and regression tasks. However, most large margin algorithms are applicable only to shallow models with a preset feature representation; and conventional margin methods for neural networks only enforce margin at the output layer. Such methods are therefore not well suited for deep networks. In this work, we propose a novel loss function to impose a margin on any chosen set of layers of a deep network (including input and hidden layers). Our formulation allows choosing any norm on the metric measuring the margin. We demonstrate that the decision boundary obtained by our loss has nice properties compared to standard classification loss functions. Specifically, we show improved empirical results on the MNIST, CIFAR-10 and ImageNet datasets on multiple tasks: generalization from small training sets, corrupted labels, and robustness against adversarial perturbations. The resulting loss is general and complementary to existing data augmentation (such as random/adversarial input transform) and regularization techniques (such as weight decay, dropout, and batch norm)

    Unsupervised Label Noise Modeling and Loss Correction

    Full text link
    Despite being robust to small amounts of label noise, convolutional neural networks trained with stochastic gradient methods have been shown to easily fit random labels. When there are a mixture of correct and mislabelled targets, networks tend to fit the former before the latter. This suggests using a suitable two-component mixture model as an unsupervised generative model of sample loss values during training to allow online estimation of the probability that a sample is mislabelled. Specifically, we propose a beta mixture to estimate this probability and correct the loss by relying on the network prediction (the so-called bootstrapping loss). We further adapt mixup augmentation to drive our approach a step further. Experiments on CIFAR-10/100 and TinyImageNet demonstrate a robustness to label noise that substantially outperforms recent state-of-the-art. Source code is available at https://git.io/fjsvEComment: Accepted to ICML 201

    Training Object Detectors With Noisy Data

    Full text link
    The availability of a large quantity of labelled training data is crucial for the training of modern object detectors. Hand labelling training data is time consuming and expensive while automatic labelling methods inevitably add unwanted noise to the labels. We examine the effect of different types of label noise on the performance of an object detector. We then show how co-teaching, a method developed for handling noisy labels and previously demonstrated on a classification problem, can be improved to mitigate the effects of label noise in an object detection setting. We illustrate our results using simulated noise on the KITTI dataset and on a vehicle detection task using automatically labelled data

    Lung Cancer Screening Using Adaptive Memory-Augmented Recurrent Networks

    Full text link
    In this paper, we investigate the effectiveness of deep learning techniques for lung nodule classification in computed tomography scans. Using less than 10,000 training examples, our deep networks perform two times better than a standard radiology software. Visualization of the networks' neurons reveals semantically meaningful features that are consistent with the clinical knowledge and radiologists' perception. Our paper also proposes a novel framework for rapidly adapting deep networks to the radiologists' feedback, or change in the data due to the shift in sensor's resolution or patient population. The classification accuracy of our approach remains above 80% while popular deep networks' accuracy is around chance. Finally, we provide in-depth analysis of our framework by asking a radiologist to examine important networks' features and perform blind re-labeling of networks' mistakes
    • …
    corecore