21,673 research outputs found

    A comparative evaluation of deep and shallow approaches to the automatic detection of common grammatical errors

    Get PDF
    This paper compares a deep and a shallow processing approach to the problem of classifying a sentence as grammatically wellformed or ill-formed. The deep processing approach uses the XLE LFG parser and English grammar: two versions are presented, one which uses the XLE directly to perform the classification, and another one which uses a decision tree trained on features consisting of the XLE’s output statistics. The shallow processing approach predicts grammaticality based on n-gram frequency statistics: we present two versions, one which uses frequency thresholds and one which uses a decision tree trained on the frequencies of the rarest n-grams in the input sentence. We find that the use of a decision tree improves on the basic approach only for the deep parser-based approach. We also show that combining both the shallow and deep decision tree features is effective. Our evaluation is carried out using a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting grammatical errors into well-formed BNC sentences

    JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction

    Full text link
    We present a new parallel corpus, JHU FLuency-Extended GUG corpus (JFLEG) for developing and evaluating grammatical error correction (GEC). Unlike other corpora, it represents a broad range of language proficiency levels and uses holistic fluency edits to not only correct grammatical errors but also make the original text more native sounding. We describe the types of corrections made and benchmark four leading GEC systems on this corpus, identifying specific areas in which they do well and how they can improve. JFLEG fulfills the need for a new gold standard to properly assess the current state of GEC.Comment: To appear in EACL 2017 (short papers
    corecore