3,501 research outputs found

    Recommending Privacy Settings for Internet-of-Things

    Get PDF
    Privacy concerns have been identified as an important barrier to the growth of IoT. These concerns are exacerbated by the complexity of manually setting privacy preferences for numerous different IoT devices. Hence, there is a demand to solve the following, urgent research question: How can we help users simplify the task of managing privacy settings for IoT devices in a user-friendly manner so that they can make good privacy decisions? To solve this problem in the IoT domain, a more fundamental understanding of the logic behind IoT users’ privacy decisions in different IoT contexts is needed. We, therefore, conducted a series of studies to contextualize the IoT users’ decision-making characteristics and designed a set of privacy-setting interfaces to help them manage their privacy settings in various IoT contexts based on the deeper understanding of users’ privacy decision behaviors. In this dissertation, we first present three studies on recommending privacy settings for different IoT environments, namely general/public IoT, household IoT, and fitness IoT, respectively. We developed and utilized a “data-driven” approach in these three studies—We first use statistical analysis and machine learning techniques on the collected user data to gain the underlying insights of IoT users’ privacy decision behavior and then create a set of “smart” privacy defaults/profiles based on these insights. Finally, we design a set of interfaces to incorporate these privacy default/profiles. Users can apply these smart defaults/profiles by either a single click or by answering a few related questions. The biggest limitation of these three studies is that the proposed interfaces have not been tested, so we do not know what level of complexity (both in terms of the user interface and the in terms of the profiles) is most suitable. Thus, in the last study, we address this limitation by conducting a user study to evaluate the new interfaces of recommending privacy settings for household IoT users. The results show that our proposed user interfaces for setting household IoT privacy settings can improve users’ satisfaction. Our research can benefit IoT users, manufacturers, and researchers, privacy-setting interface designers and anyone who wants to adopt IoT devices by providing interfaces that put their most prominent concerns in the forefront and that make it easier to set settings that match their preferences

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    An architecture for user preference-based IoT service selection in cloud computing using mobile devices for smart campus

    Get PDF
    The Internet of things refers to the set of objects that have identities and virtual personalities operating in smart spaces using intelligent interfaces to connect and communicate within social environments and user context. Interconnected devices communicating to each other or to other machines on the network have increased the number of services. The concepts of discovery, brokerage, selection and reliability are important in dynamic environments. These concepts have emerged as an important field distinguished from conventional distributed computing by its focus on large-scale resource sharing, delivery and innovative applications. The usage of Internet of Things technology across different service provisioning environments has increased the challenges associated with service selection and discovery. Although a set of terms can be used to express requirements for the desired service, a more detailed and specific user interface would make it easy for the users to express their requirements using high-level constructs. In order to address the challenge of service selection and discovery, we developed an architecture that enables a representation of user preferences and manipulates relevant descriptions of available services. To ensure that the key components of the architecture work, algorithms (content-based and collaborative filtering) derived from the architecture were proposed. The architecture was tested by selecting services using content-based as well as collaborative algorithms. The performances of the algorithms were evaluated using response time. Their effectiveness was evaluated using recall and precision. The results showed that the content-based recommender system is more effective than the collaborative filtering recommender system. Furthermore, the results showed that the content-based technique is more time-efficient than the collaborative filtering technique

    A Multi-Modal Latent-Features based Service Recommendation System for the Social Internet of Things

    Full text link
    The Social Internet of Things (SIoT), is revolutionizing how we interact with our everyday lives. By adding the social dimension to connecting devices, the SIoT has the potential to drastically change the way we interact with smart devices. This connected infrastructure allows for unprecedented levels of convenience, automation, and access to information, allowing us to do more with less effort. However, this revolutionary new technology also brings an eager need for service recommendation systems. As the SIoT grows in scope and complexity, it becomes increasingly important for businesses and individuals, and SIoT objects alike to have reliable sources for products, services, and information that are tailored to their specific needs. Few works have been proposed to provide service recommendations for SIoT environments. However, these efforts have been confined to only focusing on modeling user-item interactions using contextual information, devices' SIoT relationships, and correlation social groups but these schemes do not account for latent semantic item-item structures underlying the sparse multi-modal contents in SIoT environment. In this paper, we propose a latent-based SIoT recommendation system that learns item-item structures and aggregates multiple modalities to obtain latent item graphs which are then used in graph convolutions to inject high-order affinities into item representations. Experiments showed that the proposed recommendation system outperformed state-of-the-art SIoT recommendation methods and validated its efficacy at mining latent relationships from multi-modal features

    Designing Human-Centered Collective Intelligence

    Get PDF
    Human-Centered Collective Intelligence (HCCI) is an emergent research area that seeks to bring together major research areas like machine learning, statistical modeling, information retrieval, market research, and software engineering to address challenges pertaining to deriving intelligent insights and solutions through the collaboration of several intelligent sensors, devices and data sources. An archetypal contextual CI scenario might be concerned with deriving affect-driven intelligence through multimodal emotion detection sources in a bid to determine the likability of one movie trailer over another. On the other hand, the key tenets to designing robust and evolutionary software and infrastructure architecture models to address cross-cutting quality concerns is of keen interest in the “Cloud” age of today. Some of the key quality concerns of interest in CI scenarios span the gamut of security and privacy, scalability, performance, fault-tolerance, and reliability. I present recent advances in CI system design with a focus on highlighting optimal solutions for the aforementioned cross-cutting concerns. I also describe a number of design challenges and a framework that I have determined to be critical to designing CI systems. With inspiration from machine learning, computational advertising, ubiquitous computing, and sociable robotics, this literature incorporates theories and concepts from various viewpoints to empower the collective intelligence engine, ZOEI, to discover affective state and emotional intent across multiple mediums. The discerned affective state is used in recommender systems among others to support content personalization. I dive into the design of optimal architectures that allow humans and intelligent systems to work collectively to solve complex problems. I present an evaluation of various studies that leverage the ZOEI framework to design collective intelligence

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Developing front-end Web 2.0 technologies to access services, content and things in the future Internet

    Get PDF
    The future Internet is expected to be composed of a mesh of interoperable web services accessible from all over the web. This approach has not yet caught on since global user?service interaction is still an open issue. This paper states one vision with regard to next-generation front-end Web 2.0 technology that will enable integrated access to services, contents and things in the future Internet. In this paper, we illustrate how front-ends that wrap traditional services and resources can be tailored to the needs of end users, converting end users into prosumers (creators and consumers of service-based applications). To do this, we propose an architecture that end users without programming skills can use to create front-ends, consult catalogues of resources tailored to their needs, easily integrate and coordinate front-ends and create composite applications to orchestrate services in their back-end. The paper includes a case study illustrating that current user-centred web development tools are at a very early stage of evolution. We provide statistical data on how the proposed architecture improves these tools. This paper is based on research conducted by the Service Front End (SFE) Open Alliance initiative

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)
    • …
    corecore