1,577 research outputs found

    ISAR image matching and three-dimensional scattering imaging based on extracted dominant scatterers

    Get PDF
    This paper studies inverse synthetic aperture radar (ISAR) image matching and three-dimensional (3D) scattering imaging based on extracted dominant scatterers. In the condition of a long baseline between two radars, it is easy for obvious rotation, scale, distortion, and shift to occur between two-dimensional (2D) radar images. These problems lead to the difficulty of radar-image matching, which cannot be resolved by motion compensation and cross-correlation. What is more, due to the anisotropy, existing image-matching algorithms, such as scale invariant feature transform (SIFT), do not adapt to ISAR images very well. In addition, the angle between the target rotation axis and the radar line of sight (LOS) cannot be neglected. If so, the calibration result will be smaller than the real projection size. Furthermore, this angle cannot be estimated by monostatic radar. Therefore, instead of matching image by image, this paper proposes a novel ISAR imaging matching and 3D imaging based on extracted scatterers to deal with these issues. First, taking advantage of ISAR image sparsity, radar images are converted into scattering point sets. Then, a coarse scatterer matching based on the random sampling consistency algorithm (RANSAC) is performed. The scatterer height and accurate affine transformation parameters are estimated iteratively. Based on matched scatterers, information such as the angle and 3D image can be obtained. Finally, experiments based on the electromagnetic simulation software CADFEKO have been conducted to demonstrate the effectiveness of the proposed algorithm

    Fast and Accurate ISAR Focusing Based on a Doppler Parameter Estimation Algorithm

    Get PDF
    This letter deals with inverse synthetic aperture radar (ISAR) autofocusing of noncooperative moving targets. The relative motion between the target and the sensor, which provides the angular diversity necessary for ISAR imagery, is also responsible for unwanted range migration and phase changes generating defocusing. In the case of noncooperative targets, the relative motion is unknown: the ISAR needs, hence, to implement an autofocus step [motion compensation (MoCo)] to achieve high resolution imaging. This task is typically carried out via the optimization of functionals based on general image quality parameters. In this letter, we propose the use of a fast and accurate MoCo algorithm based on the estimation of the Doppler parameters, thus fully coping with the nature of the imaging system. The effectiveness of the proposed method is proven on both simulated data and data acquired by operational systems

    Radar Imaging Based on IEEE 802.11ad Waveform in V2I Communications

    Full text link
    Since most of vehicular radar systems are already exploiting millimeter-wave (mmWave) spectra, it would become much more feasible to implement a joint radar and communication system by extending communication frequencies into the mmWave band. In this paper, an IEEE 802.11ad waveform-based radar imaging technique is proposed for vehicular settings. A roadside unit (RSU) transmits the IEEE 802.11ad waveform to a vehicle for communications while the RSU also listens to the echoes of transmitted waveform to perform inverse synthetic aperture radar (ISAR) imaging. To obtain high-resolution images of the vehicle, the RSU needs to accurately estimate round-trip delays, Doppler shifts, and velocity of vehicle. The proposed ISAR imaging first estimates the round-trip delays using a good correlation property of Golay complementary sequences in the IEEE 802.11ad preamble. The Doppler shifts are then obtained using least square estimation from the echo signals and refined to compensate phase wrapping caused by phase rotation. The velocity of vehicle is determined using an equation of motion and the estimated Doppler shifts. Simulation results verify that the proposed technique is able to form high-resolution ISAR images from point scatterer models of realistic vehicular settings with different viewpoints. The proposed ISAR imaging technique can be used for various vehicular applications, e.g., traffic condition analyses or advanced collision warning systems

    Ground-based ISAR imaging of cooperative and non-cooperative sea vessels with 3-D rotational motion

    Get PDF
    Includes bibliographical references (leaves 175-188).Inverse Synthetic Aperture Radar (ISAR) images of sea vessels are a rich source of information for radar cross section (RCS) measurement and ship classification. However, ISAR imaging of sea vessels is a challenging task because the 3-D rotational motion of such vessels often gives rise to blurring. Blurry ISAR images are not desirable because they lead to inaccurate parameter estimation, which reduces the probability of correct classification. The objective of this thesis is to explain how 3-D rotational motion causes blurring in ISAR imagery and to develop effective techniques for imaging cooperative and non-cooperative sea vessels for RCS measurement and ship-classification purposes respectively. Much research has been done to investigate the effect of 3-D rotational motion on an ISAR image under the assumption that an object's axis of rotation is constant over the coherent processing interval (CPI). In this thesis, a new quaternion-based system model is proposed to characterise the amount of blurring in an ISAR image when a sea vessel possesses 3-D rotational motion over a CPI. Simulations were done to characterise the migration of a scatterer through Doppler cells due to the time-varying nature of the Doppler generating axis of rotation. Simulation results with realistic 3-D rotational motion show substantial blurring in the cross-range dimension of the resulting ISAR image, and this blurring is attributed to the time-varying nature of the angle of the Doppler generating axis of rotation and the object's rotation rate over the CPI

    Computational Algorithms for Improved Synthetic Aperture Radar Image Focusing

    Get PDF
    High-resolution radar imaging is an area undergoing rapid technological and scientific development. Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) are imaging radars with an ever-increasing number of applications for both civilian and military users. The advancements in phased array radar and digital computing technologies move the trend of this technology towards higher spatial resolution and more advanced imaging modalities. Signal processing algorithm development plays a key role in making full use of these technological developments.In SAR and ISAR imaging, the image reconstruction process is based on using the relative motion between the radar and the scene. An important part of the signal processing chain is the estimation and compensation of this relative motion. The increased spatial resolution and number of receive channels cause the approximations used to derive conventional algorithms for image reconstruction and motion compensation to break down. This leads to limited applicability and performance limitations in non-ideal operating conditions.This thesis presents novel research in the areas of data-driven motion compensation and image reconstruction in non-cooperative ISAR and Multichannel Synthetic Aperture Radar (MSAR) imaging. To overcome the limitations of conventional algorithms, this thesis proposes novel algorithms leading to increased estimation performance and image quality. Because a real-time imaging capability is important in many applications, special emphasis is placed on the computational aspects of the algorithms.For non-cooperative ISAR imaging, the thesis proposes improvements to the range alignment, time window selection, autofocus, time-frequency-based image reconstruction and cross-range scaling procedures. These algorithms are combined into a computationally efficient non-cooperative ISAR imaging algorithm based on mathematical optimization. The improvements are experimentally validated to reduce the computational burden and significantly increase the image quality under complex target motion dynamics.Time domain algorithms offer a non-approximated and general way for image reconstruction in both ISAR and MSAR. Previously, their use has been limited by the available computing power. In this thesis, a contrast optimization approach for time domain ISAR imaging is proposed. The algorithm is demonstrated to produce improved imaging performance under the most challenging motion compensation scenarios. The thesis also presents fast time domain algorithms for MSAR. Numerical simulations confirm that the proposed algorithms offer a reasonable compromise between computational speed and image quality metrics

    Virtual multichannel SAR for ground moving target imaging

    Get PDF
    Slow moving ground targets are invisible within synthetic aperture radar (SAR) images since they appear defocused and their backscattered signal completely overlap the focused ground return. In order for this targets to be detected and refocused the availability of some spatial degrees of freedom is required. This allows for space/slow time processing to be applied to mitigate the ground clutter. However, multichannel SAR (M-SAR) systems are very expensive and the requirements in terms of baseline length can be very restrictive. In this study a processing scheme that exploits high PRF single channel SAR system to emulate a multichannel SAR is presented. The signal model for both target and clutter components are presented and the difference with respect to an actual M-SAR are highlighted. The effectiveness of the proposed processing is then demonstrated on simulated a measured dataset

    Utilizing Near-Field Measurements to Characterize Far-Field Radar Signatures

    Get PDF
    The increased need for stealth aircraft requires an on-site Far-Field (FF) Radar Cross-Section (RCS) measurement process. Conducting these measurements in on-site Near-Field (NF) monostatic facilities results in significant savings for manufacturers and acquisition programs. However, NF measurements are not directly extended to a FF RCS. Therefore, a large target Near-Field to Far-Field Transformation (NFFFT) is needed for RCS measurements. One approach requires an Inverse Synthetic Aperture Radar (ISAR) process to create accurate scattering maps. The focus of this work is the development of accurate NF scattering maps generated by a monostatic ISAR process. As a first look, the process is isolated to a simulated environment to avoid the uncontrollable effects of real measurement environments. The simulation begins with a NF Synthetic Target Generator (STG) which approximates a target using scattering centers illuminated by spherical electromagnetic waves to approximating NF scattering. The resulting NF In-phase and Quadrature (IQ) data is used in a Trapezoidal ISAR process to create spatially distorted images that are accurately corrected within the ISAR process resolution using a newly developed NF correction. The resulting spatially accurate ISAR images do not complete the NFFFT. However, accurate scattering maps are essential for process development

    Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    Get PDF
    Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy
    corecore