86 research outputs found

    Target maneuver discrimination using ISAR image in interception

    Get PDF

    PRECONDITIONING AND THE APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS TO CLASSIFY MOVING TARGETS IN SAR IMAGERY

    Get PDF
    Synthetic Aperture Radar (SAR) is a principle that uses transmitted pulses that store and combine scene echoes to build an image that represents the scene reflectivity. SAR systems can be found on a wide variety of platforms to include satellites, aircraft, and more recently, unmanned platforms like the Global Hawk unmanned aerial vehicle. The next step is to process, analyze and classify the SAR data. The use of a convolutional neural network (CNN) to analyze SAR imagery is a viable method to achieve Automatic Target Recognition (ATR) in military applications. The CNN is an artificial neural network that uses convolutional layers to detect certain features in an image. These features correspond to a target of interest and train the CNN to recognize and classify future images. Moving targets present a major challenge to current SAR ATR methods due to the “smearing” effect in the image. Past research has shown that the combination of autofocus techniques and proper training with moving targets improves the accuracy of the CNN at target recognition. The current research includes improvement of the CNN algorithm and preconditioning techniques, as well as a deeper analysis of moving targets with complex motion such as changes to roll, pitch or yaw. The CNN algorithm was developed and verified using computer simulation.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Effects of Motion Measurement Errors on Radar Target Detection

    Get PDF
    This thesis investigates the relationships present between signal-to-clutter ratios, motion measurement errors, image quality metrics, and the task of target detection, in order to discover what factor merit greater focus in order to attain the highest probability of target detection success. This investigation is accomplished by running a high number of Monte Carlo trials through a coherent target detector and analyzing the results. The aforementioned relationships are demonstrated via sample synthetic aperture radar imagery, histograms, receiver operating characteristics curves, and error bar plots
    • …
    corecore