3,427 research outputs found

    Early Accurate Results for Advanced Analytics on MapReduce

    Full text link
    Approximate results based on samples often provide the only way in which advanced analytical applications on very massive data sets can satisfy their time and resource constraints. Unfortunately, methods and tools for the computation of accurate early results are currently not supported in MapReduce-oriented systems although these are intended for `big data'. Therefore, we proposed and implemented a non-parametric extension of Hadoop which allows the incremental computation of early results for arbitrary work-flows, along with reliable on-line estimates of the degree of accuracy achieved so far in the computation. These estimates are based on a technique called bootstrapping that has been widely employed in statistics and can be applied to arbitrary functions and data distributions. In this paper, we describe our Early Accurate Result Library (EARL) for Hadoop that was designed to minimize the changes required to the MapReduce framework. Various tests of EARL of Hadoop are presented to characterize the frequent situations where EARL can provide major speed-ups over the current version of Hadoop.Comment: VLDB201

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author
    • …
    corecore