1,955 research outputs found

    Cross-layer system reliability assessment framework for hardware faults

    Get PDF
    System reliability estimation during early design phases facilitates informed decisions for the integration of effective protection mechanisms against different classes of hardware faults. When not all system abstraction layers (technology, circuit, microarchitecture, software) are factored in such an estimation model, the delivered reliability reports must be excessively pessimistic and thus lead to unacceptably expensive, over-designed systems. We propose a scalable, cross-layer methodology and supporting suite of tools for accurate but fast estimations of computing systems reliability. The backbone of the methodology is a component-based Bayesian model, which effectively calculates system reliability based on the masking probabilities of individual hardware and software components considering their complex interactions. Our detailed experimental evaluation for different technologies, microarchitectures, and benchmarks demonstrates that the proposed model delivers very accurate reliability estimations (FIT rates) compared to statistically significant but slow fault injection campaigns at the microarchitecture level.Peer ReviewedPostprint (author's final draft

    TANGO: Transparent heterogeneous hardware Architecture deployment for eNergy Gain in Operation

    Get PDF
    The paper is concerned with the issue of how software systems actually use Heterogeneous Parallel Architectures (HPAs), with the goal of optimizing power consumption on these resources. It argues the need for novel methods and tools to support software developers aiming to optimise power consumption resulting from designing, developing, deploying and running software on HPAs, while maintaining other quality aspects of software to adequate and agreed levels. To do so, a reference architecture to support energy efficiency at application construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Comment: Part of the Program Transformation for Programmability in Heterogeneous Architectures (PROHA) workshop, Barcelona, Spain, 12th March 2016, 7 pages, LaTeX, 3 PNG figure

    Reliable Software for Unreliable Hardware - A Cross-Layer Approach

    Get PDF
    A novel cross-layer reliability analysis, modeling, and optimization approach is proposed in this thesis that leverages multiple layers in the system design abstraction (i.e. hardware, compiler, system software, and application program) to exploit the available reliability enhancing potential at each system layer and to exchange this information across multiple system layers

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Cross layer reliability estimation for digital systems

    Get PDF
    Forthcoming manufacturing technologies hold the promise to increase multifuctional computing systems performance and functionality thanks to a remarkable growth of the device integration density. Despite the benefits introduced by this technology improvements, reliability is becoming a key challenge for the semiconductor industry. With transistor size reaching the atomic dimensions, vulnerability to unavoidable fluctuations in the manufacturing process and environmental stress rise dramatically. Failing to meet a reliability requirement may add excessive re-design cost to recover and may have severe consequences on the success of a product. %Worst-case design with large margins to guarantee reliable operation has been employed for long time. However, it is reaching a limit that makes it economically unsustainable due to its performance, area, and power cost. One of the open challenges for future technologies is building ``dependable'' systems on top of unreliable components, which will degrade and even fail during normal lifetime of the chip. Conventional design techniques are highly inefficient. They expend significant amount of energy to tolerate the device unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. Unfortunately, the additional cost introduced to compensate unreliability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor for integrated circuit performance, and energy efficiency is a top concern. Attention should be payed to tailor techniques to improve the reliability of a system on the basis of its requirements, ending up with cost-effective solutions favoring the success of the product on the market. Cross-layer reliability is one of the most promising approaches to achieve this goal. Cross-layer reliability techniques take into account the interactions between the layers composing a complex system (i.e., technology, hardware and software layers) to implement efficient cross-layer fault mitigation mechanisms. Fault tolerance mechanism are carefully implemented at different layers starting from the technology up to the software layer to carefully optimize the system by exploiting the inner capability of each layer to mask lower level faults. For this purpose, cross-layer reliability design techniques need to be complemented with cross-layer reliability evaluation tools, able to precisely assess the reliability level of a selected design early in the design cycle. Accurate and early reliability estimates would enable the exploration of the system design space and the optimization of multiple constraints such as performance, power consumption, cost and reliability. This Ph.D. thesis is devoted to the development of new methodologies and tools to evaluate and optimize the reliability of complex digital systems during the early design stages. More specifically, techniques addressing hardware accelerators (i.e., FPGAs and GPUs), microprocessors and full systems are discussed. All developed methodologies are presented in conjunction with their application to real-world use cases belonging to different computational domains

    ReDO: Cross-Layer Multi-Objective Design-Exploration Framework for Efficient Soft Error Resilient Systems

    Get PDF
    Designing soft errors resilient systems is a complex engineering task, which nowadays follows a cross-layer approach. It requires a careful planning for different fault-tolerance mechanisms at different system's layers: starting from the technology up to the software domain. While these design decisions have a positive effect on the reliability of the system, they usually have a detrimental effect on its size, power consumption, performance and cost. Design space exploration for cross-layer reliability is therefore a multi-objective search problem in which reliability must be traded-off with other design dimensions. This paper proposes a cross-layer multi-objective design space exploration algorithm developed to help designers when building soft error resilient electronic systems. The algorithm exploits a system-level Bayesian reliability estimation model to analyze the effect of different cross-layer combinations of protection mechanisms on the reliability of the full system. A new heuristic based on the extremal optimization theory is used to efficiently explore the design space. An extended set of simulations shows the capability of this framework when applied both to benchmark applications and realistic systems, providing optimized systems that outperform those obtained by applying state-of-the-art cross-layer reliability techniques

    Sources of Variations in Error Sensitivity of Computer Systems

    Get PDF
    Technology scaling is reducing the reliability of integrated circuits. This makes it important to provide computers with mechanisms that can detect and correct hardware errors. This thesis deals with the problem of assessing the hardware error sensitivity of computer systems. Error sensitivity, which is the likelihood that a hardware error will escape detection and produce an erroneous output, measures a system’s inability to detect hardware errors. This thesis present the results of a series of fault injection experiments that investigated how er- ror sensitivity varies for different system characteristics, including (i) the inputs processed by a program, (ii) a program’s source code implementation, and (iii) the use of compiler optimizations. The study focused on the impact of tran- sient hardware faults that result in bit errors in CPU registers and main memory locations. We investigated how the error sensitivity varies for single-bit errors vs. double-bit errors, and how error sensitivity varies with respect to machine instructions that were targeted for fault injection. The results show that the in- put profile and source code implementation of the investigated programs had a major impact on error sensitivity, while using different compiler optimizations caused only minor variations. There was no significant difference in error sen- sitivity between single-bit and double-bit errors. Finally, the error sensitivity seems to depend more on the type of data processed by an instruction than on the instruction type
    • …
    corecore