8,813 research outputs found

    Cross-layer Optimization for Video Delivery over Wireless Networks

    Get PDF
    As video streaming is becoming the most popular application of Internet mo- bile, the design and the optimization of video communications over wireless networks is attracting increasingly attention from both academia and indus- try. The main challenges are to enhance the quality of service support, and to dynamically adapt the transmitted video streams to the network condition. The cross-layer methods, i.e., the exchange of information among different layers of the system, is one of the key concepts to be exploited to achieve this goals. In this thesis we propose novel cross-layer optimization frameworks for scalable video coding (SVC) delivery and for HTTP adaptive streaming (HAS) application over the downlink and the uplink of Long Term Evolution (LTE) wireless networks. They jointly address optimized content-aware rate adaptation and radio resource allocation (RRA) with the aim of maximiz- ing the sum of the achievable rates while minimizing the quality difference among multiple videos. For multi-user SVC delivery over downlink wireless systems, where IP/TV is the most representative application, we decompose the optimization problem and we propose the novel iterative local approxi- mation algorithm to derive the optimal solution, by also presenting optimal algorithms to solve the resulting two sub-problems. For multiple SVC de- livery over uplink wireless systems, where healt-care services are the most attractive and challenging application, we propose joint video adaptation and aggregation directly performed at the application layer of the transmit- ting equipment, which exploits the guaranteed bit-rate (GBR) provided by the low-complexity sub-optimal RRA solutions proposed. Finally, we pro- pose a quality-fair adaptive streaming solution to deliver fair video quality to HAS clients in a LTE cell by adaptively selecting the prescribed (GBR) of each user according to the video content in addition to the channel condi- tion. Extensive numerical evaluations show the significant enhancements of the proposed strategies with respect to other state-of-the-art frameworks

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Adaptive Modulation and Coding and Cooperative ARQ in a Cognitive Radio System

    Full text link
    In this paper, a joint cross-layer design of adaptive modulation and coding (AMC) and cooperative automatic repeat request (C-ARQ) scheme is proposed for a secondary user in a shared-spectrum environment. First, based on the statistical descriptions of the channel, closed-form expressions of the average spectral efficiency (SE) and the average packet loss rate (PLR) are presented. Then, the cross-layer scheme is designed, with the aim of maximizing the average SE while maintaining the average PLR under a prescribed level. An optimization problem is formed, and a sub-optimal solution is found: the target packet error rates (PER) for the secondary system channels are obtained and the corresponding sub-optimal AMC rate adaptation policy is derived based on the target PERs. Finally, the average SE and the average PLR performance of the proposed scheme are presented
    • …
    corecore