475 research outputs found

    Power-Aware QoS Enhancement in Multihop DS-CDMA Visual Sensor Networks

    Get PDF
    Abstract-We propose a quality-driven method for network resource allocation with transmission power control in a multihop Direct Sequence Code Division Multiple Access (DS-CDMA) Wireless Visual Sensor Network (WVSN). A multihop WVSN typically consists of source nodes that monitor different areas and relay nodes that retransmit recorded scenes. In order to achieve the best possible video quality at the receiver while consuming the least possible transmission power, we propose a joint optimization scheme that allocates the available resources among the nodes with respect to the imposed constraints. Moreover, we formulate a weighted bi-objective optimization problem and study the tradeoff between video quality and consumed transmission power. The simulation demonstrate that excessive transmission power is used when power control is omitted for a rather small quality gain for certain nodes

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    FracBot: Design of wireless underground sensor networks for mapping hydraulic fractures and determining reservoir parameters in unconventional systems

    Get PDF
    Wireless underground sensor networks (WUSNs) enable a wide variety of emerging applications that are not possible with current underground monitoring techniques, which require miniaturized wireless sensor systems for mapping hydraulic fractures, monitoring unconventional reservoirs and measuring other wellbore parameters. We call these devices FracBots (Fracture Robots), an extension of RFID (Radio Frequency IDentifcation) tags that realize WUSNs for mapping and characterization of hydraulic fractures in unconventional reservoirs. The objective of this thesis is to design fully integrated magnetic induction (MI)-based FracBots (WUSNs) that enable reliable and e fficient wireless communications in underground oil reservoirs for performing the in-situ monitoring of oil reservoirs. This is very crucial for determining the sweet spot of oil and natural gas reserves. To this end, we have contributed in four areas as follows: fi rst, we develop a novel cross-layer communication framework for MI-based FracBot networks in dynamically changing underground environments. The framework combines a joint selection of modulation, channel coding, power control and a geographic forwarding paradigm. Second, we develop a novel MI-based localization framework that exploits the unique properties of MI- eld to determine the locations of the randomly deployed FracBot nodes in oil reservoirs. Third, we develop an accurate energy framework of a linear FracBot network topology that generates feasible nodes' transmission rates and network topology while always guaranteeing su fficient energy. Then, we design, develop, and fabricate MI-based FracBot nodes. Finally, to validate the performance of our solutions in our produced prototype of FracBot nodes, we develop a physical MI-based WUSN testbed.Ph.D

    Wireless communication protocol architectures for nanosensor networks

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2004Recent developments in micro fabrication and nanotechnology will enable the inexpensive manufacturing of massive numbers of tiny computing elements with sensors. New programming paradigms are required to obtain organized and coherent behavior from the cooperation of large numbers of sensor nodes. The individual nodes are identical, randomly placed and unreliable. They communicate with a small local neighborhood via wireless broadcast. In such environments, where individual nodes have limited resources, aggregating the node into groups is useful for specialization, increased robustness, and efficient resource allocation. In this paper, an application-specific self-organization protocol stack is developed. The clustering process is divided into phases. The first phase is to know the neighbor nodes. The second phase is to set up the cluster and routing. A 'find maximum clique algorithm' is used to set up clusters. A back off method is used to set up the hop field and routing. Group leaders set up a TDMA schedule for steady state operation. This schedule ensures that there is no conflict among in the same cluster and between clusters. Direct-sequence spread spectrum (DS-SS) is used to avoid inter-group conflict. The limited power resource is a challenge in nanosensor networks. This paper uses two different ways to analyze energy consumed in nanosensor networks, energy cost field and bit flow method. Sensor node deployment, cluster size, and propagation condition effect are discussed in this paper by those two methods respectively

    Non-linear echo cancellation - a Bayesian approach

    Get PDF
    Echo cancellation literature is reviewed, then a Bayesian model is introduced and it is shown how how it can be used to model and fit nonlinear channels. An algorithm for cancellation of echo over a nonlinear channel is developed and tested. It is shown that this nonlinear algorithm converges for both linear and nonlinear channels and is superior to linear echo cancellation for canceling an echo through a nonlinear echo-path channel

    Energy Efficient Cooperative Mobile Sensor Network

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore