312 research outputs found

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Optimization of the interoperability and dynamic spectrum management in mobile communications systems beyond 3G

    Get PDF
    The future wireless ecosystem will heterogeneously integrate a number of overlapped Radio Access Technologies (RATs) through a common platform. A major challenge arising from the heterogeneous network is the Radio Resource Management (RRM) strategy. A Common RRM (CRRM) module is needed in order to provide a step toward network convergence. This work aims at implementing HSDPA and IEEE 802.11e CRRM evaluation tools. Innovative enhancements to IEEE 802.11e have been pursued on the application of cross-layer signaling to improve Quality of Service (QoS) delivery, and provide more efficient usage of radio resources by adapting such parameters as arbitrary interframe spacing, a differentiated backoff procedure and transmission opportunities, as well as acknowledgment policies (where the most advised block size was found to be 12). Besides, the proposed cross-layer algorithm dynamically changes the size of the Arbitration Interframe Space (AIFS) and the Contention Window (CW) duration according to a periodically obtained fairness measure based on the Signal to Interference-plus-Noise Ratio (SINR) and transmission time, a delay constraint and the collision rate of a given machine. The throughput was increased in 2 Mb/s for all the values of the load that have been tested whilst satisfying more users than with the original standard. For the ad hoc mode an analytical model was proposed that allows for investigating collision free communications in a distributed environment. The addition of extra frequency spectrum bands and an integrated CRRM that enables spectrum aggregation was also addressed. RAT selection algorithms allow for determining the gains obtained by using WiFi as a backup network for HSDPA. The proposed RAT selection algorithm is based on the load of each system, without the need for a complex management system. Simulation results show that, in such scenario, for high system loads, exploiting localization while applying load suitability optimization based algorithm, can provide a marginal gain of up to 450 kb/s in the goodput. HSDPA was also studied in the context of cognitive radio, by considering two co-located BSs operating at different frequencies (in the 2 and 5 GHz bands) in the same cell. The system automatically chooses the frequency to serve each user with an optimal General Multi-Band Scheduling (GMBS) algorithm. It was shown that enabling the access to a secondary band, by using the proposed Integrated CRRM (iCRRM), an almost constant gain near 30 % was obtained in the throughput with the proposed optimal solution, compared to a system where users are first allocated in one of the two bands and later not able to handover between the bands. In this context, future cognitive radio scenarios where IEEE 802.11e ad hoc modes will be essential for giving access to the mobile users have been proposed

    Scalable Video Streaming for Single-Hop Wireless Networks Using a Contention-Based Access MAC Protocol

    Get PDF
    Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC) protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches

    Frame-based mapping mechanism for energy-efficient MPEG-4 video transmission over IEEE 802.11e networks with better quality of delivery

    Full text link
    Recent developments in hardware, software and communication technologies have resulted in increasing interest in the use of wireless local area networks (WLANs). Mobile devices with embedded WLAN functionality are becoming increasingly popular. Such devices must be designed to support applications that require high quality of service (QoS) and have favorable to maximize battery capacity. The resources of queues in IEEE 802.11e networks may be wasted by the transmission of information that is useless to the receiver. This work develops a frame-based mapping mechanism (FBM) that exploits different methods to process I/P/B (Intra/Predictive/Bipredictive) video frame packets. FBM refers to the dropping of arriving packets if the preceding packets in the same video frame have been dropped. When fragmented packets of a single frame are allocated to different access categories (AC) queues, out-of order delivery may occur. Hence, FBM tries to treat all fragmented packets of each video frame equally and allocates them to the same AC queue if possible. The simulation results demonstrate that transmission by the FBM is more efficient than that by other mechanisms, such as EDCA (Enhanced Distributed Channel Access), static mapping and adaptive mapping, suggesting that the energy of a device is not wasted in the transmission of useless video data in WLANs. (C) 2015 Elsevier Ltd. All rights reserved.Foundation item: The National Project of Taiwan (No.: MOST 103-2221-E507-001). Authors are grateful to Ministry of Science and Technology Grant no. (MOST 103-2221-E507-001), Government of Taiwan for financial support to carry out this work.Ke, C.; Yang, C.; Chen, J.; Ghafoor, KZ.; Lloret, J. (2015). Frame-based mapping mechanism for energy-efficient MPEG-4 video transmission over IEEE 802.11e networks with better quality of delivery. Journal of Network and Computer Applications. 58:280-286. https://doi.org/10.1016/j.jnca.2015.08.005S2802865

    QoS support in satellite and wireless networks : study under the network simulator (NS-2)

    Get PDF
    Aquest projecte es basa en l'estudi de l'oferiment de qualitat de servei en xarxes wireless i satel·litals. Per això l'estudi de les tècniques de cross-layer i del IEEE 802.11e ha sigut el punt clau per al desenvolupament teòric d'aquest estudi. Usant el simulador de xarxes network simulator, a la part de simulacions es plantegen tres situacions: l'estudi de la xarxa satel·lital, l'estudi del mètode d'accés HCCA i la interconnexió de la xarxa satel·lital amb la wireless. Encara que aquest últim punt, incomplet en aquest projecte, ha de ser la continuació per a futures investigacions.Este proyecto se basa en el estudio del ofrecimiento de calidad de servicio en redes wireless y satelitales. Por eso el estudio de las técnicas de cross-layer y del IEEE 802.11eha sido el punto clave para el desarrollo teórico de este estudio. Usando el simulador de redes network simulator, en la parte de simulaciones se plantean tres situaciones: el estudio de la red satelital, el estudio del método de acceso HCCA y la interconexión de la red satelital con la wireless. Aunque este último punto, incompleto en este proyecto, tiene que ser la continuación para futuras investigaciones.This project is based on the study of offering quality of service in satellite and wireless networks. For that reason the study of the techniques of cross-layer and the IEEE 802.11e has been the key point for the theoretical development of this study. Using the software network simulator, in the part of simulations three situations consider: the study of the satellite network, the study of the access method HCCA and the interconnection of the satellite network with the wireless. Although this last point, incomplete in this work, must be the continuation for future investigations
    corecore