333 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    A Cross Layer Model to Support QoS for Multimedia Applications on Wireless Networks

    Get PDF
    Supporting multimedia application over wireless networks poses multiple challenges. Currently the use of cross layer architectures and Scalable Video Coding ( ) techniques are considered to support multimedia applications. The current architectures fail to address the tradeoff that exists between the end to end delay and the Quality of Service ( ) provisioning of the video data to be delivered. To address this issue this paper introduces the improvement scheme in video transmission model based on a cross layer architecture. A novel encoding of the SVC video is considered in the proposed model. Based on the physical layer conditions and the achievable the model adapts to meet the stringent delay requirements of video delivery. Routing layer optimization is achieved by accounting for the pending packets queues in every neighboring node. The experimental study conducted prove the robustness of the proposed model by comparing with the existing schemes. Comparisons in terms of the transmission error rates, system utility and quality of reconstruction are presented

    Enhanced transport protocols for real time and streaming applications on wireless links

    Full text link
    Real time communications have, in the last decade, become a highly relevant component of Internet applications and services, with both interactive communications and streamed content being used in developed and developing countries alike. Due to the proliferation of mobile devices, wireless media is becoming the means of transmitting a large part of this increasingly important real time communications traffic. Wireless has also become an important technology in developing countries, with satellite communications being increasingly deployed for traffic backhaul and ubiquitous connection to the Internet. A number of issues need to be addressed in order to have an acceptable service quality for real time communications in wireless environments. In addition to this, the availability of multiple wireless interfaces on mobile devices presents an opportunity to improve and further exacerbates the issues already present on single wireless links. Therefore in this thesis, we consider improvements to transport protocols for real time communications and streaming services to address these problems and we provide the following contributions. To deal with wireless link issues of errors and delay, we propose two enhancements. First, an improvement technique for Datagram Congestion Control Protocol CCID4 for long delay wireless (e.g. satellite) links, demonstrating significant performance improvements for Voice over IP applications. To deal with link errors, we have proposed, implemented and evaluated an erasure coding based packet error correction approach for Concurrent Multipath Transfer extension of Stream Control Transport Protocol data transport over multiple wireless paths. We have identified packet reordering as a major cause of performance degradation in both single and multi-path transport protocols for real time communications and media streaming. We have proposed a dynamically resizable buffer based solution to mitigate this problem within the DCCP protocol. For improving the performance of multi-path transport protocols over dissimilar network paths, we have proposed a delay aware packet scheduling scheme, which significantly improves the performance of multimedia and bulk data transfer with CMT-SCTP in heterogeneous multi-path network scenarios. Finally, we have developed a tool for online streaming video quality evaluation experiments, comprising a real-time cross-layer video streaming technique implemented within an open-source H.264 video encoder tool called x264

    Enabling Multipath and Multicast Data Transmission in Legacy and Future Internet

    Get PDF
    The quickly growing community of Internet users is requesting multiple applications and services. At the same time the structure of the network is changing. From the performance point of view, there is a tight interplay between the application and the network design. The network must be constructed to provide an adequate performance of the target application. In this thesis we consider how to improve the quality of users' experience concentrating on two popular and resource-consuming applications: bulk data transfer and real-time video streaming. We share our view on the techniques which enable feasibility and deployability of the network functionality leading to unquestionable performance improvement for the corresponding applications. Modern mobile devices, equipped with several network interfaces, as well as multihomed residential Internet hosts are capable of maintaining multiple simultaneous attachments to the network. We propose to enable simultaneous multipath data transmission in order to increase throughput and speed up such bandwidth-demanding applications as, for example, file download. We design an extension for Host Identity Protocol (mHIP), and propose a multipath data scheduling solution on a wedge layer between IP and transport, which effectively distributes packets from a TCP connection over available paths. We support our protocol with a congestion control scheme and prove its ability to compete in a friendly manner against the legacy network protocols. Moreover, applying game-theoretic analytical modelling we investigate how the multihomed HIP multipath-enabled hosts coexist in the shared network. The number of real-time applications grows quickly. Efficient and reliable transport of multimedia content is a critical issue of today's IP network design. In this thesis we solve scalability issues of the multicast dissemination trees controlled by the hybrid error correction. We propose a scalable multicast architecture for potentially large overlay networks. Our techniques address suboptimality of the adaptive hybrid error correction (AHEC) scheme in the multicast scenarios. A hierarchical multi-stage multicast tree topology is constructed in order to improve the performance of AHEC and guarantee QoS for the multicast clients. We choose an evolutionary networking approach that has the potential to lower the required resources for multimedia applications by utilizing the error-correction domain separation paradigm in combination with selective insertion of the supplementary data from parallel networks, when the corresponding content is available. Clearly both multipath data transmission and multicast content dissemination are the future Internet trends. We study multiple problems related to the deployment of these methods.Internetin nopeasti kasvava käyttäjäkunta vaatii verkolta yhä enemmän sovelluksia ja palveluita. Samaan aikaan verkon rakenne muuttuu. Suorituskyvyn näkökulmasta on olemassa selvä vuorovaikutussovellusten ja verkon suunnittelun välillä. Verkko on rakennettava siten, että se pystyy takaamaan riittävän suorituskyvyn halutuille palveluille. Tässä väitöskirjassa pohditaan, miten verkon käyttökokemusta voidaan parantaa keskittyen kahteen suosittuun ja resursseja vaativaan sovellukseen: tiedonsiirtoon ja reaaliaikaiseen videon suoratoistoon. Esitämme näkemyksemme tekniikoista, jotka mahdollistavat tarvittavien verkkotoiminnallisuuksien helpon toteuttavuuden sekä kiistatta parantavat sovelluksien suorityskykyä. Nykyaikaiset mobiililaitteet monine verkkoyhteyksineen, kuten myös kotitietokoneet, pystyvät ylläpitämään monta internet-yhteyttä samanaikaisesti. Siksi ehdotamme monikanavaisen tiedonsiirron käyttöä suorituskyvyn parantamiseksi ja etenkin vaativien verkkosovelluksien, kuten tiedostonsiirron, nopeuttamiseksi. Tässä väitöskirjassa suunnitellaan Host Identity Protocol (mHIP) -laajennus, sekä esitetään tiedonsiirron vuorotteluratkaisu, joka hajauttaa TCP-yhteyden tiedonsiirtopaketit käytettävissä oleville kanaville. Protokollamme tueksi luomme myös ruuhkautumishallinta-algoritmin ja näytämme sen pystyvän toimimaan yhteen nykyisien verkkoprotokollien kanssa. Tämän lisäksi tutkimme peliteoreettista mallinnusta käyttäen, miten monikanavaiset HIP-verkkopäätteet toimivat muiden kanssa jaetuissa verkoissa. Reaaliaikaisten sovellusten määrä kasvaa nopeasti. Tehokas ja luotettava multimediasisällön siirto on olennainen vaatimus nykypäivän IP-verkoissa. Tässä työssä ratkaistaan monilähetyksen (multicast) jakelustruktuurin skaalautuvuuteen liittyviä ongelmia. Ehdotamme skaalautuvaa monilähetysarkkitehtuuria suurille peiteverkoille. Ratkaisumme puuttuu adaptiivisen virhekorjauksen (Adaptive Hybrid Error Correction, AHEC) alioptimaalisuuteen monilähetystilanteissa. Luomme hierarkisen monivaiheisen monilähetyspuutopologian parantaaksemme AHECin suorituskykyä, sekä taataksemme monilähetysasiakkaiden palvelun laadun. Valitsimme evoluutiomaisen lähestymistavan, jolla on potentiaalia keventää multimediasovelluksien verkkoresurssivaatimuksia erottamalla virhekorjauksen omaksi verkkotunnuksekseen, sekä käyttämällä valikoivaa täydentävää tiedonlisäystä rinnakkaisverkoista vastaavan sisällön ollessa saatavilla. Sekä monikanava- että monilähetystiedonsiirto ovat selvästi osa internetin kehityssuuntaa. Tässä väitöskirjassa tutkimme monia ongelmia näiden tekniikoiden käyttöönottoon liittyen
    corecore